Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:19:35.480Z Has data issue: false hasContentIssue false

Energy transport in metal nanoparticle plasmon waveguides

Published online by Cambridge University Press:  15 February 2011

Stefan A. Maier
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
Pieter G. Kik
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
Luke A. Sweatlock
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
Harry A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
J. J. Penninkhof
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
Sheffer Meltzer
Affiliation:
Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089, USA
Elad Harel
Affiliation:
Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089, USA
Ari A.G. Requicha
Affiliation:
Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089, USA
Bruce E. Koel
Affiliation:
Laboratory for Molecular Robotics, University of Southern California, Los Angeles, CA 90089, USA
Get access

Abstract

We investigate the optical properties of arrays of closely spaced metal nanoparticles in view of their potential to guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. Finite-difference time-domain simulations of short arrays of noble metal nanospheres show that electromagnetic pulses at optical frequencies can propagate along the arrays due to near-field interactions between plasmon-polariton modes of adjacent nanoparticles. Near-field microscopy enables the study of energy transport in these plasmon waveguides and shows experimental evidence for energy propagation over a distance of 0.5 νm for plasmon waveguides consisting of spheroidal silver particles fabricated using electron beam lithography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saleh, B. E. A. and Teich, M. C., Fundamentals of Photonics. 1991, New York: Wiley.Google Scholar
2. Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R., and Joannopoulos, J. D., High transmission through sharp bends in photonic crystal waveguides. Physical Review Letters 77(18), 37873790 (1996)Google Scholar
3. Moosburger, J., Kamp, M., Forchel, A., Olivier, S., Benisty, H., Weisbuch, C., and Oesterle, U., Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering. Applied Physics Letters 79(22), 35793581 (2001)Google Scholar
4. Painter, O., Lee, R. K., Scherer, A., Yariv, A., O'Brian, J. D., Dapkus, P. D., and Kim, I., Two-dimensional photonic band-gap defect mode laser. Science 284(5421), 18191821 (1999)Google Scholar
5. Raether, H., Surface Plasmons on smooth and rough surfaces and on gratings. 1988, Berlin: Springer.Google Scholar
6. Tominaga, J., Mihalcea, C., Büchel, D., Fukuda, H., Nakano, T., Atoda, N., Fuji, H., and Kikukawa, T., Local plasmon photonic transistor. Applied Physics Letters 78(17), 24172419 (2001)Google Scholar
7. Kottmann, J. P. and Martin, O. J. F., Plasmon resonant coupling in metallic nanowires. Optics Express 8(12), 655663 (2001)Google Scholar
8. Kottmann, J. P., Martin, O. J. F., Smith, D. R., and Schultz, S., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B 64, 235402 (2001)Google Scholar
9. Lamprecht, B., Krenn, J. R., Schider, G., Ditlbacher, H., Salerno, M., Felidj, N., Leitner, A., Aussenegg, F. R., and Weeber, J. C., Surface plasmon propagation in microscale metal stripes. Applied Physics Letters 79(1), 5153 (2001)Google Scholar
10. Weeber, J. C., Dereux, A., Girard, C., Krenn, J. R., and Goudonnet, J. P., Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Physical Review B 69(12), 90619068 (1999)Google Scholar
11. , Dickson, and, R. M. Lyon, L. A., Unidirectional plasmon propagation in metallic nanowires. Journal of Physical Chemistry B 104, 60956098 (2000)Google Scholar
12. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., and Kobayashi, T., Guiding of a onedimensional optical beam with nanometer diameter. Optics Letters 22(7), 475477 (1997)Google Scholar
13. Kreibig, U. and Vollmer, M., Optical properties of metal clusters. 1995, Berlin: Springer.Google Scholar
14. Bohren, C. F. and Huffman, D. R., Absorption and scattering of light by small particles. 1983, New York: Wiley.Google Scholar
15. Klar, T. A., Perner, M., Grosse, S., Plessen, G. von, Spirkl, W., and Feldmann, J., Surfaceplasmon resonances in single metallic particles. Physical Review Letters 80(19), 42494252 (1998)Google Scholar
16. Quinten, M., Leitner, A., Krenn, J. R., and Aussenegg, F. R., Electromagnetic energy transport via linear chains of silver nanoparticles. Optics Letters 23(17), 13311333 (1998)Google Scholar
17. Brongersma, M. L., Hartman, J. W., and Atwater, H. A., Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Physical Review B 62, R16356 (2000)Google Scholar
18. Craighead, H. G. and Niklasson, G. A., Characterization and optical properties of arrays of small gold particles. Applied Physics Letters 44(12), 11341136 (1984)Google Scholar
19. Hoogenboom, J. P., Vossen, D. L. J., Faivre-Moskalenko, C., Dogterom, M., and Blaaderen, A. van, Patterning surfaces with colloidal particles using optical tweezers. Applied Physics Letters 80(25), 48284830 (2002)Google Scholar
20. McMillan, R. A., Paavola, C. D., Howard, J., Chan, S. L., Zaluzec, N. J., and Trent, J. D., Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Materials 1, 247252 (2002)Google Scholar
21. Müller, T., Heinig, K.-H., and Schmidt, B., Template-directed self-assembly of buried nanowires and the pearling instability. Materials Science and Engineering C 19, 209213 (2002)Google Scholar
22. Penninkhof, J. J., Polman, A., Sweatlock, L. A., Atwater, H. A., Vredenberg, A., and Kooi, B. J., MeV ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass. Applied Physics Letters submitted, (2003)Google Scholar
23. Citrin, D. S., Coherent transport of excitons in quantum-dot chains: role of retardation. Optics Letters 20(8), 901903 (1995)Google Scholar
24. Poddar, P., Telem-Sharif, T., Fried, T., and Markovich, G., Dipolar interactions in twoand three-dimensional magnetic nanoparticle arrays. Physical Review B 66, 060403(R) (2002)Google Scholar
25. Yariv, A., Xu, Y., Lee, R.K., and Scherer, A., Coupled-resonator optical waveguide: a proposal and analysis. Optics Letters 24(11), 711713 (1999)Google Scholar
26. Maier, S. A., Brongersma, M. L., and Atwater, H. A., Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices. Applied Physics Letters 78(1), 1618 (2001)Google Scholar
27. Maier, S. A., Brongersma, M. L., and Atwater, H. A., Electromagnetic energy transport along Yagi arrays. Materials Science and Engineering C 19, 291294 (2002)Google Scholar
28. Maier, S. A., Brongersma, M. L., and Atwater, H. A., Electromagnetic energy transport along Yagi arrays, in MRS Proceedings. 2001. p. E2.9.Google Scholar
29. Maier, S. A., Brongersma, M. L., Kik, P.G., and Atwater, H.A., Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Physical Review B 65, 193408 (2002)Google Scholar
30. Maier, S. A.,Brongersma, M. L., Kik, P.G., Meltzer, S., Requicha, A. A. G., and Atwater, H. A., Plasmonics - a route to nanoscale optical devices. Advanced Materials 13(19), 15011505 (2001)Google Scholar
31. Maier, S. A., Kik, P.G., and Atwater, H. A., Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Applied Physics Letters 81, 17141716 (2002)Google Scholar
32. Maier, S. A., Kik, P.G., and Atwater, H. A., Optical pulse propagation in metal nanoparticle chain waveguides. Physical Review B accepted, (2003)Google Scholar
33. Maier, S. A., Kik, P. G., Atwater, H. A., Meltzer, S., Requicha, A. A. G., and Koel, B. E., Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit, in Proceedings of SPIE. 2002. p. 7182.Google Scholar
34. Maier, S. A., Kik, P. G., Brongersma, M. L., and Atwater, H. A., Electromagnetic energy transport below the diffraction limit in periodic metal nanostructures, in Proceedings of SPIE. 2001. p. 2230.Google Scholar
35. Maier, S. A., Kik, P.G.,Brongersma, M. L., Atwater, H.A., Meltzer, S., A, A.. Requicha, G., and Koel, B. E., Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit, in MRS Proceedings. 2002. p. Y3.6.Google Scholar
36. Maier, S. A., Kik, P.G., Atwater, H. A., Meltzer, S., Harel, E., Koel, B. E., and Requicha, A. A. G., Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Materials 2, 229 (2003)Google Scholar
37. Shlager, K. L. and Schneider, J. B., A selective survey of the finite-difference time-domain literature. IEEE Antennas & Propagation Magazine 37(4), 3956 (1995)Google Scholar
38. Sönnichsen, C., Franzl, T., Wilk, T., Plessen, G. von, Feldmann, J., Wilson, O., and Mulvaney, P., Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters 88(7), 077402 (2002)Google Scholar