Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T00:23:25.858Z Has data issue: false hasContentIssue false

Enhanced Electrooptic Activity of Nlo Polymers Via the Use of Conductive Polymers

Published online by Cambridge University Press:  10 February 2011

J. G. Grote
Affiliation:
United States Air Force Research Laboratory, Materials and Manufacturing Directorate AFRL/MLPO, Wright-Patterson Air Force Base, OH 45433-7707, James.Grote@afrl.af.mil
J. P. Drummond
Affiliation:
United States Air Force Research Laboratory, Materials and Manufacturing Directorate AFRL/MLPO, Wright-Patterson Air Force Base, OH 45433-7707, James.Grote@afrl.af.mil
J. S. Zetts
Affiliation:
United States Air Force Research Laboratory, Materials and Manufacturing Directorate AFRL/MLPO, Wright-Patterson Air Force Base, OH 45433-7707, James.Grote@afrl.af.mil
R. L. Nelson
Affiliation:
United States Air Force Research Laboratory, Materials and Manufacturing Directorate AFRL/MLPO, Wright-Patterson Air Force Base, OH 45433-7707, James.Grote@afrl.af.mil
F. K. Hopkins
Affiliation:
United States Air Force Research Laboratory, Materials and Manufacturing Directorate AFRL/MLPO, Wright-Patterson Air Force Base, OH 45433-7707, James.Grote@afrl.af.mil
C. Zhang
Affiliation:
University of Southern California, 3620 McClintock Ave., Los Angeles, CA 90089-1062
L. R. Dalton
Affiliation:
University of Southern California, 3620 McClintock Ave., Los Angeles, CA 90089-1062
W. H. Steier
Affiliation:
University of Southern California, 3620 McClintock Ave., Los Angeles, CA 90089-1062
Get access

Abstract

We have demonstrated a 3 to 13 times increase in the effective electro-optic (EO) coefficient of electrode poled nonlinear optical polymers using a conductive polymer cladding, compared to using passive polymer claddings. We have also demonstrated the lowest poling voltage to date, 300 V, for a 2 μm thick NLO polymer film. Since the cladding material is more conductive than the core material, the majority of the applied poling voltage is dropped across the core, realizing a higher EO coefficient than for conventional devices using passive polymer claddings and has the potential for in-situ poling. These results show promise for shorter, lower operating voltage devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dalton, L. in Electrical and Optical Polymer Systems: Fundamentals, Methods and Applications, edited by Wise, D, Wnek, G., Trantolo, D., Cooper, T., Gresser, J., Marcel Dekker, New York, NY, pp. 609661, 1998.Google Scholar
2. Robinson, B., Dalton, L., Harper, A., Ren, A., Wang, F., Zhang, C., Todorova, G., Lee, M., Aniszfeld, R., Garner, S., Chen, A., Steier, W., Houbrecht, S, Persoons, A., Ledoux, I., Zyss, J., and Jen, A., Chem. Phys., 245, pp. 3550 (1999).Google Scholar
3. Ren, A. and Dalton, L., Current Opinion in Colloid & Interface Science, 4, pp. 165171 (1999).Google Scholar
4. Zhang, C., Ren, A., Wang, F., Zhu, J., Dalton, L., Woodford, J., and Wang, C., Chem. Mater., 11, pp. 1966–8 (1999).Google Scholar
5. Todorova, G., Ren, A., Lee, M., Zhang, C., Dalton, L., Zhang, H., and Steier, W., Polym. Prepr., 40, pp. 916–7 (1999).Google Scholar
6. Harper, A., Mao, S., Ra, Y., Zhang, C., Zhu, J., Dalton, L., Garner, S., Chen, A., and Steier, W., Chem. Mater., 11, pp. 2886–91 (1999).Google Scholar
7. Yariv, A, Quantum Electronics, John Wiley & Sons, New York, NY, pp. 327354, 1975.Google Scholar
8. Grote, J. and Drummond, J. in Optoelectronic Integrated Circuits and Packaging III, edited by Feldman, M., Grote, J., Hibbs-Brenner, M. (SPIE Proc., 3631, Bellingham WA, 1999), pp. 8695.Google Scholar
9. Grote, J. and Drummond, J in Photonics and Radio Frequency II, edited by (SPIE Proc., 3463, Bellingham WA, 1998), p. 4347.Google Scholar
10. Drummond, J., Clarson, S., Zetts, J. and Caracci, S., Proc. of the Soc. of Plastics Engineers (ANTEC), 2, p. 1265, 1998.Google Scholar
11. Shi, Y., private communication.Google Scholar
12. Chen, D., Bhattacharya, D., Udupa, A., Tsap, B., Fetterman, H., Chen, A., Lee, S., Chen, J., Steier, W., and Dalton, L., IEEE Photonics Technology Letters, 11, pp. 5456 (1999).Google Scholar
13. Dalton, L., Harper, A., Ren, A., Wang, F., Todorova, G., Chen, J., Zhang, C., and Lee, M., Ind.Eng. Chem. Res, 38, pp. 833 (1999).Google Scholar
14. Dalton, L., Steier, W., Robinson, B., Zhang, C., Ren, A., Garner, S., Chen, A., Londergan, T., Irwin, L., Carlson, B., Fifield, L., Phelan, G., Kincaid, C., Amend, J., and Jen, A., J. Chem. Mater., 9, pp. 1905–21 (1999).Google Scholar
15. Steier, W., Chen, A., Lee, S., Garner, S., Zhang, H., Chuyanov, V., Dalton, L., Wang, F., Ren, A., Zhang, C., Todorova, G., Harper, A., Fetterman, H., Chen, D., Udupa, A., Bhattacharya, D., and Tsap, B., Chem.Phys., 245, pp. 487506 (1999).Google Scholar
16. Udupa, A., Erlig, H., Tsap, B., Chang, Y., Chang, D., Fetterman, H., Zhang, H., Lee, S., Wang, F., Steier, W., and Dalton, L., Electronic Letters, 35, pp. 1702–4 (1999).Google Scholar
17. Grote, J. in Electrical and Optical Polymer Systems: Fundamentals, Methods and Applications, edited by Wise, D, Wnek, G., Trantolo, D., Cooper, T., Gresser, J., Marcel Dekker, New York, NY, pp. 541594, 1998.Google Scholar