Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T03:05:49.398Z Has data issue: false hasContentIssue false

Epitaxial growth of V2O3 on Al2O3 by reactive MBE

Published online by Cambridge University Press:  07 March 2011

Leander Dillemans
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Tuan Tran
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Md. Nurul Kabir Bhuiyan
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Tomas Smets
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Mariela Menghini
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Ruben Lieten
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Jin Won Seo
Affiliation:
Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium.
Jean-Pierre Locquet
Affiliation:
Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
Get access

Abstract

Vanadium oxides are strongly correlated electron systems that are interesting both from a fundamental scientific point of view and for possible future applications including memory and sensors. In this contribution, we report on the epitaxial growth of V2O3 thin films on c-Al2O3 (0001) with molecular beam epitaxy and atomic oxygen. We studied the influence of deposition rate and substrate temperature on the structural properties and the metal-insulator transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwingenschlögl, U. and Eyert, V., Ann. Phys. 13, No. 9, 475510 (2004)Google Scholar
2. Keller, G., Held, K., Eyert, V., Vollhardt, D. and Anisimov, V.I., Phys. Rev. B 70, 205116 (2004)Google Scholar
3. Luo, Q., Guo, Q. and Wang, E.G., Appl. Phys. Lett. 84, 13 (2004)Google Scholar
4. Mott, N.F., Rev. Mod. Phys. 40, 677683 (1968)Google Scholar
5. Held, K., Keller, G., Eyert, V., Vollhardt, D. and Anisimov, V. I., Phys. Rev. Lett. 86, 23 (2001)Google Scholar
6. Poteryaev, A. I., Tomczak, J. M., Biermann, S., Georges, A., Lichtenstein, A. I., Rubtsov, A. N., Saha-Dasgupta, T. and Andersen, O. K., Phys. Rev. B 76, 085127 (2007)Google Scholar
7. Allimi, B. S.,1 Alpay, S. P., Xie, C. K., Wells, B. O., Budnick, J. I. and Pease, D. M. Appl. Phys. Lett. 92, 202105 (2008)Google Scholar
8. Autier-Laurent, S., Mercey, B., Chippaux, D., Limelette, P. and Simon, Ch., Phys. Rev. B 74, 195109 (2006) (2006)Google Scholar
9. Grygiel, C., Simon, Ch., Mercey, B., Prellier, W., Frésard, R. and Limelette, P. Appl. Phys. Lett. 91, 262103 (2007)Google Scholar
10. Metcalf, P.A., Guha, S., Gonzalez, L.P., Barnes, J.O., Slamovich, E.B., Honig, J. M., Thin Solid Films 515 (2007) 34213425.Google Scholar
11. Locquet, J.-P. and Mächler, E., J. of Vac. Science & Technol., A10, 31003103 (1992)Google Scholar
12. Eckert, L. J. and Bradt, R. C., J. Appl. Phys. 44, 3470 (1973)Google Scholar
13. Fiquetá, G. Richetá, P. Montagnac, G., Phys Chem Minerals (1999) 27: 103111 Ó Springer-Verlag 1999 Google Scholar