Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T19:12:48.307Z Has data issue: false hasContentIssue false

Epitaxial Thin Films and Heterostrcutures of Copper-Oxide-Based Isotropic Metallic Oxides for Device Applications

Published online by Cambridge University Press:  15 February 2011

C. B. Eom*
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, eom@acpub.duke.edu
Get access

Abstract

We have grown epitaxial thin films of a new family of copper-oxide-based isotropic metallic oxides such as La6.4Sr1.6Cu8O20, La5BaCu6O13 and La6BaYCu8O20in situ by 900° off-axis sputtering. These metallic oxides are pseudo-cubic perovskites with essentially isotropic properties, which could be ideal normal metals for SNS junctions in superconducting devices. We have also grown epitaxial SNS superconducting heterostructures (c-axis YBa2Cu3O7 / La6.4Sr1.6Cu8O20 / c-axis YBa2Cu3O7) with a copper-oxide-based isotropic metallic oxide (La6.4Sr1.6Cu8O20) normal metal barrier. X-ray diffraction and cross-sectional transmission electron microscopy reveal these heterostructures to have high crystalline quality and clean interfaces. This material will facilitate fabrication of ideal SNS Josephson junctions with low boundary resistance due to its excellent chemical compatibility and lattice match with cuprate superconductors and will be useful for determining the source of interface resistance in such heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Likarev, K. K., Rev. Mod. Phys., 51, 101 (1979).Google Scholar
2. Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, Julia M., Dover, R. B. van, Marshall, J. H., Hsu, J. W. P., Krajewski, J. J and Peck, W. F. Jr, Science, 258, 1766 (1993).Google Scholar
3. Eom, C. B., Cava, R. J., Phillips, Julia M. and Werder, D. J., submitted to Appl Phys. Lett, (1994).Google Scholar
4. Cheung, J. T., Morgan, P. E. D., Lowndes, D. H., Zheng, X.-Y., and Breen, J., Appl. Phys. Lett., 62, 2045 (1993)Google Scholar
5. Satyalakshmi, K. M., Mallya, R. M., Ramanathan, K. V., Wu, X. D., Brainard, B., Gautier, D. C., Vasanthacharya, N. Y., and Hedge, M. S., Appl. Phys. Lett., 62, 1233 (1993)1. J. Randall, and R.Ward, J. Am. Chem. Soc. 81, 2629 (1959)Google Scholar
6. Gupta, A., Hussey, B. W., Guloy, A. M., Shaw, T. M., Saraf, R. F., Bringley, J. F., and Scott, B. A., J. Sol. St. Chem, 108, 202 (1994).Google Scholar
7. Desfeux, R., Hamot, J. F., Mercey, B., Simon, C., Hervieu, M. and Raveau, B., Physica C, 221, 205 (1994).Google Scholar
8. Char, K., Colcough, M. S., Geballe, T. H., and Myers, K. E., Appl. Phys. Lett., 62, 196 (1993).Google Scholar
9. Char, K., et al Appl. Phys. Lett., 63, 2420 (1993).Google Scholar
10. Eom, C. B., Fleming, R. M., Phillips, Julia M., Cava, R. J., Marshall, J. H., Werder, D. J., Chen, C. H., Krajewski, J. J., and Peck, W. F. Jr,., MRS Spring Meeting Abstract, pp 401 (1993)Google Scholar
11. Eom, C. B., Marshall, A. F., Triscone, J.-M., Wilkens, B., Laderman, S. S., and Geballe, T. H., Science, 251, 780 (1991).Google Scholar
12. Er-Rakho, L., Michel, C. and Raveau, B., J. Solid State Chemistry, 73, 514 (1988).Google Scholar
13. Michel, C., Er-Rakho, L. and Raveau, B., Mat. Res. Bull., 20, 667 (1985).Google Scholar
14. Cava, R. J., private communicationGoogle Scholar
15. Bringley, J. F., Scott, B. A., Placa, S. J. La, Boehme, R. F., Shaw, T. M., McElfresh, M. W., Trail, S. S. and Cox, D. E., Nature, 347, 263 (1990).Google Scholar