Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T07:09:29.913Z Has data issue: false hasContentIssue false

Evaluation of Crack Growth Retardation Effect Due to Nano-scale Voids Based on Molecular Dynamics Method

Published online by Cambridge University Press:  22 March 2011

Shin Taniguchi
Affiliation:
Graduate Student, University of Tsukuba, Tennodai1-1-1, Tsukuba, Ibaraki, Japan, 305-8573
Toshihiro Kameda
Affiliation:
University of Tsukuba, Tennodai1-1-1, Tsukuba, Ibaraki, Japan, 305-8573
Get access

Abstract

This study has investigated the crack growth retardation effect due to plural nano-scale voids in Cu single crystals using a molecular dynamics (MD) method. Focusing on an interaction between nano-scale voids and dislocations, we have evaluated the optimum placement for crack growth retardation. MD simulations showed that the dislocation activity was further enhanced due to plural nano-scale voids continuously placed on the primary slip direction. The significant ductility enhancement and slight yield stress increase due to the crack shielding effect of nano-scale voids were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zinkle, S. J., Ghoniem, N. M., Fusion Eng. Des. 5152, 55 (2000).Google Scholar
2. Dai, Y., Victoria, M., Mat. Res. Soc. Symp. Proc. 439, 319 (1997).Google Scholar
3. Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M. I., Schäublin, R., Singh, B. N., J. Nucl. Mater. 276, 114 (2000).Google Scholar
4. de la Rubia, T. Dias, Zbib, H. M., Khraishi, T. A., Wirth, B. D., Victoria, M., Caturla, M. J., Nature. 406, 871 (2000).Google Scholar
5. Hafez Haghighat, S. M., Fivel, M. C., Fikar, J., Schaeublin, R., J. Nucl. Mater. 386388, 102 (2009).Google Scholar
6. Riemelmoser, F. O., Pippan, R., Mater. Sci. Eng. A. 234236, 135 (1997).Google Scholar
7. Morita, T., Araki, S., Saito, K., JSME Int. J. Ser. A. 44, 453 (2001).Google Scholar
8. Zhao, K. J., Chen, C. Q., Shen, Y. P., Lu, T. J., Comp. Mat. Sci. 46, 749 (2009).Google Scholar
9. Kameda, T., Zhang, B., Mater. Sci. Forum. 654656, 1582 (2010).Google Scholar
10. Tanighchi, S., Kameda, T., JSME 18th Ibaraki District Conf. 1002, 17 (2010).Google Scholar
11. Plimpton, S. J., J. Comput. Phys. 117, 1 (1995).Google Scholar
12. Horstemeyer, M. F., Baskes, M. I., Phys. Rev. B. 29, 6443 (1984).Google Scholar
13. Kekchber, C. L., Plimpton, S. J., Hamiltion, J. C., Phys. Rev. B. 58, 85 (1998).Google Scholar
14. Honeycutt, J. D., Andersen, H. C., J. Phys. Chem. 91, 4950 (1987).Google Scholar
15. Humphrey, W., Dalke, A., Schuiten, K., J. Mol. Graph. 14, 33 (1996).Google Scholar