Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T22:16:08.909Z Has data issue: false hasContentIssue false

Exploring Back Contact Technology to Increase CdS/CdTe Solar Cell Efficiency

Published online by Cambridge University Press:  01 February 2011

Alan L. Fahrenbruch*
Affiliation:
alanf@stanford.edu, Colorado State University, Department of Physics, 107 Montalvo Rd., Redwood City, CA, 94062, United States
Get access

Abstract

The primary routes for increasing CdS/CdTe solar cell efficiency involve increasing free carrier density, reducing bulk and interface recombination, and/or reducing back contact barrier height. This paper focuses on the role of the back contact barrier in increasing cell efficiency. Measurement of barrier height and back surface recombination are outlined and three CdTe/MX/M back contact prototypes, each with particular strengths, are discussed to bring out important issues.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sites, J. and Pan, J., E-MRS (06), Nice. Thin Solid Films (07), in press.Google Scholar
2. Fahrenbruch, A., 4th World Conf. Photovoltaic Energy Conversion, Hawaii (06) p.376.Google Scholar
3. V, P.. Meyers, Solar Cells 27, 91 (89).Google Scholar
4. Reislöhner, U., Hädrich, M. et al. E-MRS (06). Thin Solid Films (07), in press.Google Scholar
5. Metzger, W. K, Romero, M. J, Dippo, P., and Young, M., 4th World Conf. Photovoltaic Energy Conv., Hawaii (06) p. 372.Google Scholar
6. Burgelman, M., Verschraegen, J., Degrave, S., Nollet, P. Thin Solid Films 480-1, 392 (05).Google Scholar
7. Niemegeers, A. and Burgelman, M., J. Appl. Phys., 81, 2881 (97).Google Scholar
8. Demtsu, S. H and Sites, J. R, Thin Solid Films 510, 320 (06).Google Scholar
8a. Agostinelli, G., Dunlop, E. D, Bätzner, D. L., Tiwari, A. N, Nollet, P., Burgelman, M., and Köntges, M., 3rd World Conf. Photovoltaic Energy Conv., Osaka (03) p. 356.Google Scholar
8b. Some experimental J-V characteristics can be fitted precisely by J = Jo(V-Vo)2, where V is the applied bias and Jo and Vo are constants.Google Scholar
9. Stollwerck, G. and Sites, J. R, 13th European PV Solar Energy Conf.,Nice, (95), p. 2020.Google Scholar
10. McCandless, B. E and Phillips, J., Titus, J., 2nd World PVSEC Conf., Vienna, (98), p. 448.Google Scholar
11. Klein, A., “Advances in Solid State Analysis,” 44, Springer (04) p. 13.Google Scholar
11a. Klein, A., Sauberlich, F., Späth, B., Schulmeyer, T., & Kraft, D., J. Mater. Sci. 42, 1890 (07).Google Scholar
12. Schroder, D., “Semiconductor Material & Device Characterization,” Wiley (06) p. 526, 550.Google Scholar
13. Kronik, L. and Shapira, Y., Surf. Interface Anal. 31, 954 (01). Also, Schroder op cit. p. 404.Google Scholar
13a. Narayanamurti, V. and Kozhenvnikov, M., Physics Reports 349, 447514 (01).Google Scholar
13b. Dharmadasa, I. M., Prog. in Crystal Growth and Character. of Mat'ls. 36, 249290 (98).Google Scholar
13c. Fowell, A. E., Williams, R. H et al. Semicond. Sci. Technol. 5, 346 (90).Google Scholar
14. Nollet, P., Burgelman, M., Degrave, S., and Beier, J., Proc. 28th IEEE Photovoltaic Specialists Conf. (02). p. 704.Google Scholar
15. Tousek, J., Kindl, D., Toušková, J., Dolhov, S., and Poruba, A., J. Appl. Phys. 89, 460 (01).Google Scholar
16. Gonzalas, M. A et al. J. Phys. IV France 125 411 (05).Google Scholar
17 Grunow, P. and Kunst, M., J. Appl. Physics 77, 2767 (95).Google Scholar
18. Mizeikis, V., Jarasiunas, K., Lovergine, N., and Kuroda, K., Thin Solid Films 364 186 (00).Google Scholar
19. Lee, C-T. and Bube, R. H, J. Appl. Phys. 54, 7041 (83).Google Scholar
20. Tung, R. T, Materials Science and Engineering Reports 35, 1138 (01).Google Scholar
20a. Gurumurthy, S., Bhat, H. L, and Kumar, V., Semicond. Sci. Technol. 14, 909 (99).Google Scholar
21. Visoly-Fisher, I., Sitt, A., Wahab, M., and Cahen, D., ChemPhysChem, 6, 277 (05).Google Scholar
22. Kraft, D., Thissen, A., Broetz, J., Flege, S., Campo, M., Klein, A., and Jaegermann, W., J. Appl. Phys. 94, 3589 (03).Google Scholar
23. Wu, X., Zhou, J., Duda, A., Yana, Y., Teeter, G., Asher, S., Metzger, W. K, Demtsu, S., Wei, S.-H., Noufi, R., 17th E-PSEC (06), Munich. Thin Solid Films (07), in press.Google Scholar
24. Britt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (93).Google Scholar
25. Hegedus, S. S and McCandless, B. E, Solar Energy Materials and Solar Cells 88, 75 (05).Google Scholar
26. Farag, B. S et al. Thin Solid Films 201, 231 (91) and. 247, 112 (94).Google Scholar
26a. Bruening, M. et al. J. Am. Chem. Soc. 116, 2977 (1994).Google Scholar
27. Späth, B. et al. E-MRS (06), Nice. Thin Solid Films (07), in press.Google Scholar
28. Viswanathan, V. et al. Proc. 28th IEEE Photovoltaic Spec. Conf., (00) p. 587.Google Scholar
29. Romeo, N., A. Bosio, and Canevari, V., Solar Energy 77, 795 (04).Google Scholar
29a. Batzner, D. L et al. Thin Solid Films 451, 536 (04).Google Scholar
30. Barri, K., Jayabal, M., Zhao, H., Morell, D. L, Asher, S., Pankow, J. W, Young, M. R, and Ferekides, C. S, Proc. 31st IEEE Photovoltaic Spec. Conf., (05) p. 287.Google Scholar
31. Rioux, D., Niles, S. W, and Hochst, H., J. Appl. Phys. 73, 8381 (93).Google Scholar
32. Späth, B., Fritsche, J., Klein, A., and Jaegermann, W., .Appl. Phys. Lett. 90, 62112 (07).Google Scholar
33. Makhratchev, K., Price, K. J, Ma, X., Simmons, D. A, Drayton, J., Ludwig, K., Gupta, A., Bohn, R. G, Compaan, A. D, Proc. 28th IEEE Photovoltaic Spec. Conf., (00) p. 475.Google Scholar
34. Gessert, T. A, Asher, S., Johnson, S., Duda, A., Young, M. R, and Moriarty, T., 4th World Conf. Photovoltaic Energy Conv., Hawaii (06) p. 432.Google Scholar
35. Tang, J., Mao, D., Ohno, T. R, Kaydanov, V., and Trefny, J. U, Proc. 26th IEEE Photovoltaic Specialists Conf. (97). p. 439.Google Scholar
36. Shaw, J. L et al. J. Vac. Sci. Technol. A6, 2752 (88).Google Scholar
37. Sutter, P.; Sutter, E., and Ohno, T.R., Applied Physics Letters; 84, 2100 (04).Google Scholar