Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T22:13:11.916Z Has data issue: false hasContentIssue false

Exploring the Length Scale Limits of Porous Silicon Combustion

Published online by Cambridge University Press:  13 May 2015

Nicholas W. Piekiel
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, U.S.A.
Christopher J. Morris
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, U.S.A.
Wayne A. Churaman
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, U.S.A.
David M. Lunking
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, MD 20783, U.S.A.
Get access

Abstract

The present study explores the burning of microscale porous silicon channels with sodium perchlorate. These on-chip porous silicon energetics were embedded in crystalline silicon, and therefore surrounded on three sides by an efficient thermal conductor. For slow burning systems, this presents complications as heat loss to the crystalline silicon substrate can result in inconsistent burning or flame extinction. We investigated <100 μm wide porous silicon strips, sparsely filled with sodium perchlorate (NaClO4), to probe the limits of on-chip combustion. Four different etch times were attempted to decrease the dimensions of the porous silicon strips. The smallest size achieved was 12 x 64 µm, and despite the small dimensions, demonstrated the same flame speed as the larger porous silicon strips of 6-7 m/s. We predict that unreacted porous silicon acts as a thermal insulator to aid combustion for slow burning porous silicon channels, and SEM images provide evidence to support this. We also investigated the small scale combustion of a rapidly burning sample (∼1200 m/s). Despite the rapid flame speed, the propagation followed a designed, winding flame path. The use of these small scale porous silicon samples could significantly reduce the energetic material footprint for future microscale applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Guo, R., Hu, Y., Shen, R., Ye, Y., Wu, L.. A micro initiator realized by integrating KNO3@CNTs nanoenergetic materials with a Cu microbridge. Chemical Engineering Journal, 2012. 211-212, 0, 3136.CrossRefGoogle Scholar
Staley, C. S., Morris, C. J., Thiruvengadathan, R., Apperson, S. J., Gangopadhyay, K., Gangopadhyay, S.. Silicon-based bridge wire micro-chip initiators for bismuth oxide-aluminum nanothermite. Journal of Micromechanics and Microengineering, 2011. 21, 11, 115015.CrossRefGoogle Scholar
Taton, G., Lagrange, D., Conedera, V., Renaud, L., Rossi, C.. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane. Journal of Micromechanics and Microengineering, 2013. 23, 10, 105009.CrossRefGoogle Scholar
Churaman, W., Currano, L., Morris, C., Rajkowski, J., Bergbreiter, S.. The First Launch of an Autonomous Thrust-Driven Microrobot Using Nanoporous Energetic Silicon. Microelectromechanical Systems, Journal of, 2012. 21, 1, 198205.CrossRefGoogle Scholar
Churaman, W., Morris, C., Currano, L., Bergbreiter, S.. On-chip porous silicon microthruster for robotic platforms. In Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS EUROSENSORS XXVII), 2013 Transducers Eurosensors XXVII: The 17th International Conference on, 2013 15991602.CrossRefGoogle Scholar
Staley, C. S., Raymond, K. E., Thiruvengadathan, R., Apperson, S. J., Gangopadhyay, K., Swaszek, S. M., Taylor, R. J., Gangopadhyay, S.. Fast-Impulse Nanothermite Solid-Propellant Miniaturized Thrusters. Journal of Propulsion and Power, 2013. 29, 6, 14001409.CrossRefGoogle Scholar
Zhang, K. L., Chou, S. K., Ang, S. S.. Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface. Journal of Micromechanics and Microengineering, 2004. 14, 6, 785.CrossRefGoogle Scholar
Braeuer, J., Besser, J., Wiemer, M., Gessner, T.. A novel technique for {MEMS} packaging: Reactive bonding with integrated material systems. Sensors and Actuators A: Physical, 2012. 188, 0, 212219. Selected papers from The 16th International Conference on Solid-State Sensors, Actuators and Microsystems . CrossRefGoogle Scholar
Qiu, X., Wang, J.. Bonding silicon wafers with reactive multilayer foils. Sensors and Actuators A: Physical, 2008. 141, 2, 476481.CrossRefGoogle Scholar
Tappan, A. S., Wixom, R. R., Trott, W. M., Long, G. T., Knepper, R., Brundage, A. L., Jones, D. A.. MICROENERGETIC SHOCK INITIATION STUDIES ON DEPOSITED FILMS OF PETN. AIP Conference Proceedings, 2009. 1195, 1, 319322.CrossRefGoogle Scholar
Tappan, A. S., Renlund, A. M., Long, G. T., Kravitz, S. H., Erickson, K. L., Trott, W. M., Baer, M. R.. MICROENERGETIC PROCESSING AND TESTING TO DETERMINE ENERGETIC MATERIAL PROPERTIES AT THE MESOSCALE. Proceedings of the 12th International Detonation Symposium, 2002. 310.Google Scholar
Knepper, R., Browning, K., Wixom, R. R., Tappan, A. S., Rodriguez, M. A., Alam, M. K.. Microstructure Evolution during Crystallization of Vapor-Deposited Hexanitroazobenzene Films. Propellants, Explosives, Pyrotechnics, 2012. 37, 4, 459467.CrossRefGoogle Scholar
Windsor, E., Najarro, M., Bloom, A., Benner, B., Fletcher, R., Lareau, R., Gillen, G.. Application of Inkjet Printing Technology to Produce Test Materials of 1,3,5-Trinitro-1,3,5 Triazcyclohexane for Trace Explosive Analysis. Analytical Chemistry, 2010. 82, 20, 85198524. PMID: 20873797.CrossRefGoogle ScholarPubMed
Sullivan, K. T., Kuntz, J. D., Gash, A. E.. FINE PATTERNING OF THERMITES FOR MECHANISTIC STUDIES AND MICROENERGETIC APPLICATIONS. International Journal of Energetic Materials and Chemical Propulsion, 2013. 12, 6, 511528.CrossRefGoogle Scholar
Rodriguez, G. A. A., Suhard, S., Rossi, C., Estève, D., Fau, P., Sabo-Etienne, S., Mingotaud, A. F., Mauzac, M., Chaudret, B.. A microactuator based on the decomposition of an energetic material for disposable lab-on-chip applications: fabrication and test. Journal of Micromechanics and Microengineering, 2009. 19, 1, 015006.CrossRefGoogle Scholar
Zhou, X., Xu, D., Zhang, Q., Lu, J., Zhang, K.. Facile Green In Situ Synthesis of Mg/CuO Core/Shell Nanoenergetic Arrays with a Superior Heat-Release Property and Long-Term Storage Stability. ACS Applied Materials & Interfaces, 2013. 5, 15, 76417646. PMID: 23869818.CrossRefGoogle ScholarPubMed
Petrantoni, M., Rossi, C., Salvagnac, L., Conédéra, V., Estève, A., Tenailleau, C., Alphonse, P., Chabal, Y. J.. Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro. Journal of Applied Physics, 2010. 108, 8, 084323.CrossRefGoogle Scholar
Gavens, A. J., Van Heerden, D., Mann, A. B., Reiss, M. E., Weihs, T. P.. Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. Journal of Applied Physics, 2000. 87, 3, 12551263.CrossRefGoogle Scholar
Son, S. F., Asay, B. W., Foley, T. J., Yetter, R. A., Wu, M. H., Risha, G. A.. Combustion of Nanoscale Al/MoO3 Thermite in Microchannels. Journal of Propulsion and Power, 2007. 23, 4, 715721.CrossRefGoogle Scholar
Becker, C. R., Apperson, S., Morris, C. J., Gangopadhyay, S., Currano, L. J., Churaman, W. A., Stoldt, C. R.. Galvanic Porous Silicon Composites for High-Velocity Nanoenergetics. Nano Letters, 2011. 11, 2, 803807.CrossRefGoogle ScholarPubMed
Piekiel, N., Churaman, W., Morris, C., Currano, L.. Combustion and material characterization of porous silicon nanoenergetics. Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on,, January, 2013. 449452.CrossRefGoogle Scholar
Piekiel, N., Churaman, W., Morris, C., Lunking, D.. Characterization of Patterened Galvanic Porous Silicon for On-Chip Combustion. In AIAA SciTech Conference Proceedings, –. American Institute of Aeronautics and Astronautics, 2014.Google Scholar
Piekiel, N. W., Morris, C. J., Churaman, W. A., Cunningham, M. E., Lunking, D. M., Currano, L. J.. Combustion and Material Characterization of Highly Tunable On-Chip Energetic Porous Silicon. Propellants, Explosives, Pyrotechnics, 2014. n/a–n/a.Google Scholar
Piekiel, N. W., Morris, C. J., Currano, L. J., Lunking, D. M., Isaacson, B., Churaman, W. A.. Enhancement of on-chip combustion via nanoporous silicon microchannels. Combustion and Flame, 2014. 161, 5, 14171424.CrossRefGoogle Scholar
Plummer, A., Kuznetsov, V., Joyner, T., Shapter, J., Voelcker, N. H.. The Burning Rate of Energetic Films of Nanostructured Porous Silicon. Small, 2011. 7, 23, 33923398.CrossRefGoogle ScholarPubMed
Ashruf, C., French, P., Bressers, P., Kelly, J.. Galvanic porous silicon formation without external contacts. Sensors and Actuators A: Physical, 1999. 74, 13, 118 – 122.CrossRefGoogle Scholar
Splinter, A., Sturmann, J., Benecke, W.. New porous silicon formation technology using internal current generation with galvanic elements. Sensors and Actuators A: Physical, 2001. 92, 13, 394 – 399.CrossRefGoogle Scholar