Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:17:14.819Z Has data issue: false hasContentIssue false

Extended State Mobility and Tail State Distribution of a-Si1-xGex:H Alloys

Published online by Cambridge University Press:  26 February 2011

C. E. Nebel
Affiliation:
Institut f. Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, F. R. Germany
H. C. Weller
Affiliation:
Institut f. Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, F. R. Germany
G. H. Bauer
Affiliation:
Institut f. Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart 80, F. R. Germany
Get access

Abstract

Time-of-flight (TOF) and charge collection measurements are evaluated to determine electron transport quality of a-Si1−x Gex:H for 0 ≤ x ≤ 0.3. The drift mobility data are used to calculate the tail state distribution at the conduction band, which turns out to be of hybrid structure (flat linear followed by a steep exponential decay). By incorporation of Ge additional localization introduced by chemical disorder broadens the band tail. The dangling bond density, calculated from electron µDTE products, also dramatically increases. Both effects contribute to the drop of photoelectronic quality of a-Si1−xGex: H alloys.

In addition it is shown that the extended state mobility deduced from TOF experiments reflects a tunneling transport mechanism in localized states above a dominant transport level that separates states with high tunnel probability from states where carriers propagate via thermal release from and capture into localized states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bauer, G.H., Nebel, C.E., Mohring, H.-D., this issue.Google Scholar
2. Weller, H.C., Kessler, F., Lotter, E., Nebel, C.E., Paasche, S.M., Bauer, G.H., J. Non-Cryst. Solids 97&98, 1071 (1987).Google Scholar
3. Hecht, Z., Z. Physik 77, 235 (1932).Google Scholar
4. Monroe, D. and Kastner, M.A., Phil. Mag. B 47, 605 (1983).Google Scholar
5. Orenstein, J., Kastner, M.A., Vaninow, V., Phil. Mag. B 46, 23 (1982).CrossRefGoogle Scholar
6. Rudenko, A.I. and Arkhipow, V.I., J. Non-Cryst. Solids 30, 163 (1987).Google Scholar
7. Schmidlin, F.W., Phys. Rev. B 16, 2362 (1977); Phil. Mag. B 41, 535 (1980).CrossRefGoogle Scholar
8. Davis, E.A., Michiel, H., Adriaenssens, G.J., Phil. Mag. B 52, 261 (1985).Google Scholar
9. Nebel, C.E. and Bauer, G.H., to be published.Google Scholar
10. Mott, N.F., J. Non-Cryst. Solids 97&98, 531 (1987).Google Scholar
11. Davis, E.A. and Shaw, R.F., J. Non-Cryst. Solids 2, 406 (1970).Google Scholar
12. Jackson, W.B., Tsai, C.C., Kelso, S.M., J. Non-Cryst. Solids 77&78, 281(1985).Google Scholar
13. Kakalios, J., Street, R.A., Phys. Rev. B 34, 6014 (1986).Google Scholar
14. Tiedje, T., Proc. of the Int. Workshop on amorphous Sem., World Scientific Pub. Co., 113 (1987).Google Scholar
15. Monroe, D., Phys. Rev. Lett. 54, 146 (1985).CrossRefGoogle Scholar
16. Stutzmann, M., J. Non-Cryst. Solids 97&98, 105 (1987).Google Scholar
17. Finger, F., Carius, R., Fuhs, W., Schrimpf, A., J. Non-Cryst. Solids 77&78, 731 (1985).Google Scholar
18. Street, R.,Tsai, C.C.,Stutzmann, M.,Kakalios, J.,Phil. Mag.B 56,289 (1987).Google Scholar