Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T10:38:02.909Z Has data issue: false hasContentIssue false

Fabrication of Mg2Si bulk by spark plasma sintering method with Mg2Si nano-powder

Published online by Cambridge University Press:  25 January 2013

Koya Arai
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Keishi Nishio
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Norifumi Miyamoto
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Kota Sunohara
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Tatsuya Sakamoto
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Hiroshi Hyodo
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Naomi Hirayama
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Yasuo Kogo
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Tsutomu Iida
Affiliation:
Department of Materials Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 287-8510, Japan
Get access

Abstract

Mg2Si bulk was fabricated by spark plasma sintering (SPS) nano-powder, and the thermoelectric characteristics of the bulk sample were evaluated at temperatures up to 873 K. A pre-synthesized all-molten commercial polycrystalline Mg2Si source (un-doped n-type semiconductor) was pulverized into powder of 75 μm or less. To obtain nano-sized fine powder, the powder was milled using planetary ball mill equipment under an inert atmosphere. Fine Mg2Si nano-powder with a mean grain size of about 500 nm was obtained. XRD analysis confirmed that no MgO existed in the nano-powder. The fine powder was put in a graphite die to obtain a sintering body of Mg2Si and treated by SPS under vacuum conditions. The resulting Mg2Si bulk had high density and did not crack. However, the XRD analysis revealed a small amount of MgO in it. The thermoelectric properties (electrical conductivity, Seebeck coefficient, and thermal conductivity) were measured from room temperature to 873 K. The microstructure of the sintered body was observed by scanning electron microscopy. The maximum dimensionless figure of merit of a sample made from Mg2Si nano-powder was ZT = 0.67 at 873 K.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Heller, M. W. and Denielson, G. C., J. Phys. Chem. Solids 23, 601 (1962)CrossRefGoogle Scholar
LaBotz, R. J., Mason, D. R., and O’Kane, D. F., J. Electrochem. Soc. 110, 121 (1963)CrossRefGoogle Scholar
Noda, Y., Kon, H., Furukawa, Y., Otsuka, N., Nishida, I., and Matsumoto, K., Mater. Trans. JIM 33, 845 (1992)CrossRefGoogle Scholar
Tani, J. and kido, H., Physica B 223, 364 (2005)Google Scholar
Zaitsev, V. K., Fedorv, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Samunin, A. Yu., and Vedernikov, M. V., Phys. Rev. B74, 045207 (2006)CrossRefGoogle Scholar
Fukumoto, M., Iida, T., Makino, K., Akasaka, M., Oguni, Y. and Takanashi, Y., Mater. Res. Soc. Proc. 1004, U6.13.1-U6.13.6 (2008)Google Scholar
Oguni, Y., Iida, T., Matsumoto, A., Nemoto, T., Onosakal, J., Takaniwa, H., Sakamoto, T., Moril, D., Akasaka, M., Sato, J., Nakajima, T., Nishio, K., and Takanashi, Y., Mater. Res. Soc. Symp. Proc. 1044, pp. 413 (2008)Google Scholar
Nemoto, T., Iida, T., Oguni, Y., Sato, J., Matsumoto, A., Sakamoto, T., Miyata, T., Nakajima, T., Taguchi, H., Nishio, K. and Takanashi, Y., Mater. Res. Soc. Symp. Proc. 1166, pp.141 (2009)CrossRefGoogle Scholar
Nemoto, T., Iida, T., Sato, J., Oguni, Y., Matsumoto, A., Miyata, Y., Sakamoto, T., Nakajima, T., Taguchi, H., Nishio, K., and Takanashi, Y., J. of Electronic Mater., 39, 9, 15721578 (2010)CrossRefGoogle Scholar
Arai, K., Akimoto, H., kineri, T., Iida, T., Nishio, K., Key Eng. Mater., 485, Electroceramics in Japan XIV, 169172 (2011)CrossRefGoogle Scholar
Sakamoto, T., Iida, T., Taguchi, Y., Kurosaki, S., Hayatsu, Y., Nishio, K., Kogo, Y., and Takanashi, Y., J. of Electronic Mater., 41, Issue 6, 14291435 (2012)CrossRefGoogle Scholar
Arai, K., Matsubara, M., Sawada, Y., Sakamoto, T., Kineri, T., Kogo, Y., Iida, T., and Nishio, K., J. of Electronic Mater., 41, Issue 6, 17711777 (2012)CrossRefGoogle Scholar
Poudell, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., and Ren, Z., Science, 320, 634638 (2008)CrossRefGoogle Scholar
Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R. W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G. and Ren, Z., Nano Lett., 8 (12), 46704674 (2008)CrossRefGoogle Scholar
Gu, Y. W., Khor, K. A., Cheang, P.: Biomater., 25, 4127 (2004)CrossRefGoogle Scholar
Wang, D., Chen, L., Yao, Q., J. Li: Solid State Com., 615 (2004)Google Scholar
JCPDS No.34-0458 Google Scholar
Sakamoto, T., Iida, T., Fukushima, N., Honda, Y., Tada, M., Taguchi, Y., Mito, Y., Taguchi, H., Takanashi, Y., Thin Solid Films, 519, Issue 24. 85288531 (2011)CrossRefGoogle Scholar