Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T16:49:03.919Z Has data issue: false hasContentIssue false

Fabrication of Permalloy Particles by Pulsed Laser Ablation in Water and Tween 80 Aqueous Solution

Published online by Cambridge University Press:  31 January 2011

Zijie Yan
Affiliation:
yanz2@rpi.edu, Rensselaer Polytechnic Institute, Materials Science and Engineering, Troy, New York, United States
Ruqiang Bao
Affiliation:
baor@rpi.edu, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, 110 8th Street, MRC151, Troy, New York, 12180, United States
Cerasela Z Dinu
Affiliation:
cerasela-zoica.dinu@mail.wvu.edu, West Virginia University, Department of Chemical Engineering, Morgantown, United States
Douglas B Chrisey
Affiliation:
chrisd@rpi.edu, Rensselaer Polytechnic Institute, Department of Materials Science and Engineering, troy, United States
Get access

Abstract

Permalloy particles were fabricated by pulsed excimer laser ablation in distilled water and Tween 80 aqueous solution with the same laser parameters. Nearly spherical particles and irregular and porous fragments were obtained in water due to rapid condensation and growth of the laser ablated clusters. The products obtained in Tween 80 aqueous solution contained well-shaped spheres but some were laser sintered together via laser-particle interactions. Holes or pits were observed on the surface of some particles, which we consider were caused by laser induced bubbles in the liquid. Our results demonstrate the rich environment ablation in liquids can be for novel particle formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sylvestre, J. P. Poulin, S. Kabashin, A.V., Sacher, E. Meunier, M. and Luong, J. H. T. J. Phys. Chem. B 108, 16864 (2004).Google Scholar
2 Muto, H. Miyajima, K. and Mafune, F. J. Phys. Chem. C112, 5810 (2008).Google Scholar
3 Mafune, F. Kohno, J. Y. Takeda, Y. Kondow, T. and Sawabe, H. J. Phys. Chem. B 104, 9111 (2000).Google Scholar
4 Werner, D. Hashimoto, S. Tomita, T. Matsuo, S. and Makita, Y. J. Phys. Chem. C112, 1321 (2008).Google Scholar
5 Mafune, F. Kohno, J. Takeda, Y. and Kondow, Y. T., J. Phys. Chem. B 107, 4218 (2003).Google Scholar
6 Garca, M. A. Ruiz-Gonzlez, M. L., Fuente, G. F. de la, Crespo, P. Gonzlez, J. M. Llopis, J. Gonzlez-Calbet, J. M., Vallet-Reg, M. and Hernando, A. Chem. Mater. 19, 889 (2007).Google Scholar
7 Gong, W. Zheng, Z. Zheng, J. Gao, W. Hu, X. and Ren, X. J. Phys. Chem. C112, 9983 (2008).Google Scholar
8 Liu, P. Cao, Y. L. Cui, H. Chen, X. Y. and Yang, G. W. Cryst. Growth Des. 8, 559 (2008).Google Scholar
9 Liu, P. Wang, C. X. Chen, X. Y. and Yang, G. W. J. Phys. Chem. C112, 13450 (2008).Google Scholar
10 Liu, P. Cai, W. and Zeng, H. J. Phys. Chem. C112, 3261 (2008).Google Scholar
11 Liang, C. Shimizu, Y. Sasaki, T. and Koshizaki, N. J. Mater. Res. 19, 1551 (2004).Google Scholar
12 Bao, R. Q. Yan, Z. J. Huang, Y. and Chrisey, D. B. Mater. Res. Soc. Symp. Proc. 1118, 1118–K02 (2009).Google Scholar
13 Schrick, B. Blough, J. L. Jones, A. D. and Mallouk, T. E. Chem. Mater. 14, 5140 (2002).Google Scholar
14 Bokare, A. D. Chikate, R. C. Rode, C.V. and Paknikar, K. M. Environ. Sci. Technol. 41, 7437 (2007).Google Scholar
15 Hytch, M. J. Dunin-Borkowski, R. E., Scheinfein, M. R. Moulin, J. Duhamel, C. Mazelayrat, F. and Champion, Y. Phys. Rev. Lett. 91, 257207 (2003).Google Scholar
16 Barpanda, P. Kasama, T. Dunin-Borkowski, R. E., Scheinfein, M. R. and Arrott, A. S. J. Appl. Phys. 99, 08G103 (2006).Google Scholar
17 Hernandez, S. C. Dou, J. Yu, C. Pechan, M. J. Folks, L. Katine, J. A. and Carey, M. J. J. Appl. Phys. 105, 07C125 (2009).Google Scholar
18 Ammar, M. LoBue, M. Snoeck, E. Hytch, M. Champion, Y. Barrue, R. and Mazaleyrat, F. J. Magn. Magn. Mater. 320, e716 (2008).Google Scholar
19 Barpanda, P. Comput. Mater. Sci. 45, 240 (2009).Google Scholar
20 Ohl, C. D. Lindau, O. and Lauterborn, W. Phys. Rev. Lett. 80, 393 (1998).Google Scholar