Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T01:08:26.281Z Has data issue: false hasContentIssue false

Fabrication of YMnO3 Films: New Candidate for Non-Volatile Memory Devices

Published online by Cambridge University Press:  10 February 2011

Norifumi Fujimura
Affiliation:
College of Engineering, Dept. of Applied Materials Science University of Osaka Prefecture, 1-1 Gakuen-cho, Sakai, Osaka, 593 Japan
Tadashi Ishida
Affiliation:
College of Engineering, Dept. of Applied Materials Science University of Osaka Prefecture, 1-1 Gakuen-cho, Sakai, Osaka, 593 Japan
Takeshi Yoshimura
Affiliation:
College of Engineering, Dept. of Applied Materials Science University of Osaka Prefecture, 1-1 Gakuen-cho, Sakai, Osaka, 593 Japan
Taichiro Ito
Affiliation:
College of Engineering, Dept. of Applied Materials Science University of Osaka Prefecture, 1-1 Gakuen-cho, Sakai, Osaka, 593 Japan
Get access

Abstract

We have proposed ReMnO3 (Re:rare earth) thin films, as a new candidate for nonvolatile memory devices. In this paper, we try to fabricate (0001) oriented YMnO3 films on (111)MgO, (0001)ZnO:Al/(0001) sapphire and (111)Pt/(111)MgO using rf magnetron sputtering. We succeed in obtaining (0001) epitaxial YMnO3 films on (111) MgO and (0001)ZnO:Al/(0001)sapphire substrate, and polycrystalline films on (111)Pt/(1 11)MgO for the first time. Electrical property of the bottom electrode (ZnO:Al) changes with varying the deposition condition of YMnO3 films. However, we find an optimum deposition condition of ZnO:Al film such that it functions as a bottom electrode even after YMnO3 film deposition. The dielectric properties of the epitaxial and polycrystalline YMnO3 films are almost the same. The YMnO3 films show leaky electrical properties. This may be caused by a change in the valence electron of Mn from 3+.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Scott, J. F. and Araujo, C. A., Science, 246, 1400 (1989)Google Scholar
2 Duiker, H. M., Beale, P. D., Scott, J. F., J. Appl. Phys., 68, 5783 (1990)Google Scholar
3 Mihara, T., Watanabe, H. and Araujo, C. A., Jpn. J. Appl. Phys., 32, 4168 (1993)Google Scholar
4 Mihara, T., Watanabe, H. and Araujo, C. A., J. Appl. Phys., 33, L1703 (1994)Google Scholar
5 Mihara, T., Yoshimori, H., Watanabe, H., Araujo, C. A., Cuchiaro, J., Scott, M. and McMillan, L. D., Proc. 4th Int. Symp. Integrated Ferroelectrics, p. 137 (1992)Google Scholar
6 Fujimura, N., Ishida, T. and Ito, T., Extended Abstracts (The 55th Autumn Meeting, 1994) The Jpn. Soc. of Appl. Phys., p.464 (1994) in JapaneseGoogle Scholar
7 Fujimura, N., Ishida, T. and lto, T., Extended Abstracts (The 56th Autumn Meeting, 1995) The Jpn. Soc. of Appl. Phys., p.440 (1995) in JapaneseGoogle Scholar
8 Fujimura, N., Ishida, T. and Ito, T., Extended Abstracts, The 7th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, p.109 Google Scholar
9 Bertaut, E. F., Forrat, F. and Fang, P. H., Compt. Rend., 256, 1958 (1963)Google Scholar
10 Yakel, H. L., Koehler, W. C., Bertaut, E. F. and Forrat, F., Acta Cryst., 16, 957 (1963)Google Scholar
11 Ismailzade, I. G., Kizhaev, S. A., Fiz Tverd Tela, 7, 298 (1965) (in Russian), Soviet Phys.—Solid State (English Trans.), 7, 236 (1965)Google Scholar
12 Smolenskii, G. A. and Bokov, V. A., J. Appl. Phys. 35, 915 (1964)Google Scholar
13 Fujimura, N., Nishihara, T., Xu, S.Goto J., and Ito, T., J. Cryst. Growth 130, 269 (1993)Google Scholar
14 Fujimura, N., Goto, S., and Ito, T., Symp. proc. of Materials Res. Soc. 263, 187 (1992)Google Scholar