Published online by Cambridge University Press: 26 February 2011
This work investigates the factors that affect the mechanical properties of Cu/electroless Ni-P/Sn-3.5Ag solder joints. For the investigation, solder joints were tensile tested after solid-state aging at different temperatures for various durations. Several factors, such as the growth of interfacial compounds (IFCs), Ni3Sn4 morphology, the accumulation of spalled Ni3Sn4 intermetallic particles at the solder/Ni3Sn4 interface, and the formation of Kirkendall voids at the Ni3P/Cu interface, are found to deteriorate the mechanical properties of the joints. Among all these factors, the formation of a layer of Kirkendall voids at the Ni3P/Cu interface, which is a result of Cu diffusion from the interface, causes the most severe decrease in tensile strength with a brittle fracture at the Ni3P/Cu interface. This layer of Kirkendall voids remains the main cause of brittle failure even after the transformation of the Ni3P layer into a Ni-Sn-P layer.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.