Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:03:06.602Z Has data issue: false hasContentIssue false

The Farthest Reaches of a-Si,Ge:H,F Parameter Space… Where no One Has Gone Before

Published online by Cambridge University Press:  21 February 2011

P.A. Morin
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA
N.W. Wang
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA
S. Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA
Get access

Abstract

We report the deposition parameters for optimized a-Si,Ge:H,F alloys in the range of optical (Taue) gap of 1.22eV to 1.65eV. These deposition parameters were optimized using the photosensitivity and initial defect density as figures of merit. We observe two distinct regimes of film growth rate, dependent on the choice of source gases. Growth from fluoride source gases results in a growth rate of less than 0.6 Ås--1. Growth from a mixture of fluorides and silane gives a range of growth rates from 2 Ås-l to 5.5Ås1. Alloys in both regimes display the low defect densities and the high photosensitivities required for devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wagner, S., Xu, X., Li, X.R., Shen, D.S., Isomura, M., Bennett, M., Delahoy, A.E., Li, X., Arch, J.K., Nicque, J.-L. and Fonash, S.J., Proc. 22nd IEEE PVSC 1991, p. 1307.Google Scholar
[2] Morin, P.A., Wang, N.W. and Wagner, S., in this volume.Google Scholar
[3] Kolodzey, J., Aljishi, S., Schwarz, R., Slobodin, D. and Wagner, S., J. Vac. Sci. Tech A4, 2499 (1986).CrossRefGoogle Scholar
[4] Wronski, C.R., Smith, Z.E., Aljishi, S., Chu, V., Shepard, K., Shen, D.S., Schwarz, R., Slobodin, D. and Wagner, S., Amer. Inst. Phys Conf. Proc. 157, 70 (1987).Google Scholar
[5] Wang, N.W., Xu, X. and Wagner, S., Amer. Inst. Phys Conf. Proc. 234, 186 (1991).Google Scholar
[6] Park, H.R., Liu, J.Z. and Wagner, S., Appl. Phys. Lett. 55, 2658 (1989).CrossRefGoogle Scholar
[7] Park, H.R., Liu, J.Z., Roca i Cabarrocas, P., Maruyama, A., Isomura, M. and Wagner, S., Appl. Phys. Lett. 57, 1440 (1990).CrossRefGoogle Scholar
[8] Isomura, M., Xu, X. and Wagner, S., Solar Cells 30, 177 (1991).CrossRefGoogle Scholar
[9] Gleskova, H., Morin, P.A., Bullock, J. and Wagner, S., Materials Letters, to be published.Google Scholar
[10] Wang, N.W., Morin, P.A. and Wagner, S., in this volume.Google Scholar
[11] Kolodzey, J., Aljishi, S., Smith, Z.E., Chu, V., Schwarz, R. and Wagner, S., Mat. Res. Soc. Symp. Proc. 70, 237 (1986).CrossRefGoogle Scholar
[12] Aljishi, S., Smith, Z.E., Slobodin, D., Kolodzey, J., Chu, V., Schwarz, R. and Wagner, S., Mat. Res. Soc. Symp. Proc. 70, 269 (1986).CrossRefGoogle Scholar
[13] Shen, D.S., Kolodzey, J., Slobodin, D., Conde, J.P., Lane, C., Campbell, I.H., Fauchet, P.M. and Wagner, S., Mat. Res. Soc. Symp. Proc. 70, 301 (1986).CrossRefGoogle Scholar
[14] Kolodzey, James, PhD thesis, Princeton University, 1986.Google Scholar