Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T15:50:20.127Z Has data issue: false hasContentIssue false

Femtosecond Laser Structuring of As2S3 Glass for Erasable and Permanent Optical Memory

Published online by Cambridge University Press:  01 February 2011

Saulius Juodkazis
Affiliation:
Saulius@es.hokudai.ac.jp, Hokkaido University, Sapporo 001-0021, Japan
Andrei V. Rode
Affiliation:
avr111@rsphysse.anu.edu.au, The Australian National University, Canberra, 0200, Australia
Toshiaki Kondo
Affiliation:
Kondo@es.hokudai.ac.jp, Hokkaido University, Sapporo, 001-0021, Japan
Hiroaki Misawa
Affiliation:
Misawa@es.hokudai.ac.jp, Hokkaido University, Sapporo, 001-0021, Japan
Marek Samoc
Affiliation:
mjs111@rsphysse.anu.edu.au, The Australian National University, Canberra, 0200, Australia
Barry Luther-Davies
Affiliation:
bld111@rsphysse.anu.edu.au, The Australian National University, Canberra, 0200, Australia
Get access

Abstract

The nonlinear absorption coefficient of As2S3 glass has been measured to be 2.0 cm/GW for femtosecond pulses at 800 nm. Femtosecond laser structuring via two photon absorption in bulk As2S3 glass by erasable and permanent photo-darkening is demonstrated using both holographic and direct multi-beam laser writing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zoubir, A., Richardson, M., Rivero, C., Schulte, A., Lopez, C., Richardson, K., Ho, N., and Valee, R., Opt. Lett. 29, 748750 (2004).Google Scholar
2. Viens, J.-F., Meneghini, C., Villeneuve, A., Galstian, T., Knystautas, E., Duguay, M., Richardson, K., and Cardinal, T., IEEE J. of Lightwave Technol. 17, 11841191 (1999).Google Scholar
3. Zakery, A., Ruan, Y., Rode, A. V., Samoc, M., and Luther-Davies, B., J. Opt. Soc. Am. B 20, 18441852 (2003).Google Scholar
4. Rode, A. V., Zakery, A., Samoc, M., Charters, R. B., Gamaly, E. G., and Luther-Davies, B., Appl. Surf. Sci. 197-198, 481 ‐ 485 (2002).Google Scholar
5. Schaffer, C. B., Garcia, J., and Mazur, E., Appl. Phys. A 76, 351354 (2003).Google Scholar
6. Juodkazis, S., Rode, A. V., Gamaly, E. G., Matsuo, S., and Misawa, H., Appl. Phys. B 77, 361368 (2003).Google Scholar
7. Kondo, T., Matsuo, S., Juodkazis, S., and Misawa, H., Appl. Phys. Lett. 79, 725727 (2001).Google Scholar
8. Kondo, T., Matsuo, S., Juodkazis, S., Mizeikis, V., and Misawa, H., J. Photopolym. Sci. Technol. 16, 427432 (2003).Google Scholar
9. Rhee, B. K., Byun, J. S., and Stryland, E. W. Van, J. Opt. Soc. Am. B 13, 27202723 (1996).Google Scholar
10. Sheikh-Bahae, M., Said, A. A., Wei, T., Hagan, D. J., and Stryland, E. W. Van, IEEE J. Quantum Electron. 26, 760769 (1990).Google Scholar
11. Matsuo, S., Juodkazis, S., and Misawa, H., Appl. Phys. A 80, 683685 (2004).Google Scholar
12. Juodkazis, S., Kondo, T., Misawa, H., Rode, A., Samoc, M., Luther-Davies, B., Optics Express, 14, 77517756 (2006).Google Scholar