Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T06:57:03.656Z Has data issue: false hasContentIssue false

Ferroelectric Properties of SBT doped with Pr

Published online by Cambridge University Press:  01 February 2011

J. Mata
Affiliation:
Centro de Ciencias de la Materia Condensada, UNAM, Apdo. Postal 2681, C.P. 22800, Ensenada, B.C., MÉXICO
A. Durán
Affiliation:
Centro de Ciencias de la Materia Condensada, UNAM, Apdo. Postal 2681, C.P. 22800, Ensenada, B.C., MÉXICO
E. Martínez
Affiliation:
Centro de Ciencias de la Materia Condensada, UNAM, Apdo. Postal 2681, C.P. 22800, Ensenada, B.C., MÉXICO
J. M. Siqueiros
Affiliation:
Centro de Ciencias de la Materia Condensada, UNAM, Apdo. Postal 2681, C.P. 22800, Ensenada, B.C., MÉXICO
J. Heiras
Affiliation:
Centro de Ciencias de la Materia Condensada, UNAM, Apdo. Postal 2681, C.P. 22800, Ensenada, B.C., MÉXICO
Get access

Abstract

The Sr1-xPrxBi2Ta2O9 (SBT-Pr) ferroelectric ceramic doped with Praseodymium in the range of concentration between 0 and 0.20 was studied. X-ray diffraction patterns show that the Pr-ion substitutes the Sr-ion in the main structure (A21am space group) and, as a consequence of this substitution the unit cell decreases monotonically. Thermoelectric Analysis (ε vs T) and ferroelectric hysteresis measurements were performed. From the ε-T curves it was observed that the transition temperature depends almost linearly on Pr content. Broad phase transitions were also observed, a typical behavior of ferroelectric materials with diffuse phase transition (DPT). An increase in the diffuseness coefficient is obtained by increasing Pr content according to the Isupov model, due to the higher cationic disorder in the structure, resulting in the loss of the long-range ferroelectric ordering. The hysteresis loop indicates that the substitution of Sr2+ by Pr3+,4+ lowers the polarization due possible to strong pinning domain mechanisms that obstruct long range ferroelectric ordering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Scott, J.F. and Araujo, C.A., Science 246, 1400 (1989).Google Scholar
2. Paz de Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C., & Scott, J. F., Nature 374, 627 (1995)Google Scholar
3. Shimakawa, Y., Kubo, Y., Nakagawa, Y., Goto, S., Kamiyama, T., Asano, H., Izumi, F. Phys. Rev. B 61, 65596564 (2000)Google Scholar
4. Subbarao, E. C, J. Phys. Chem. Solids, 23, 665 (1962).Google Scholar
5. Noguchi, Yuji, Kitamura, Atsushi, Woo, Lee-C., Miyayama, Masaru, Oikawa, Kenichi and Kamiyama, Takashi J. Appl. Phys., 94 6749 (2003).Google Scholar
6. Noguchi, Y., Miyayama, M., Oikawa, K., Kamiyama, T., Osada, M., Kakihana, M., Jpn. J. Appl. Phys. 41 7062 (2002).Google Scholar
7. Kitamura, Atsushi, Noguchi, Yuji, Miyayama, Masaru, Materials Letters 58 1815(2004).Google Scholar
8. Kim, J. S., Cheon, C., Shim, H.S., & Lee, C.H., J. Eur. Ceram. Soc. 21, 1295, (2001).Google Scholar
9. Shimakawa, Y. and Kubo, Y., Nakagawa, Y., Kamiyama, T., Asano, H., Izumi, F. Appl. Phys. Lett. 74, 1904 (1999).Google Scholar
10. Kamba, S., Pokorný, J., Porokhonskyy, V., Petzelt, J., Moret, M. P., Garg, A. and Barber, Z. H., Zallen, R., Appl. Phys. Lett. 81, 1056 (2002).Google Scholar
11. Wills, A. S. and Brown, I.D., QUANTO (A Rietveld program for quantitative phase analysis of polycrystalline mixtures) VaList, CEA, France (1999).Google Scholar
12. Noguchi, Y., Miyayama, M., Kudo, T., Phys. Rev. B 63 214102, (2001).Google Scholar
13. Kirillov, V. V. and Isupov, V. A., Ferroelectrics, 53 (1973)Google Scholar
14. 2. Guerrero, F., Amorín, H., Portelles, J., Siqueiros, J. and Aguilera, S., J. of Electroceramics, 3 83 (1999).Google Scholar