Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T05:19:51.920Z Has data issue: false hasContentIssue false

Ferromagnetism in lightly Gd doped GaN: The role of defects

Published online by Cambridge University Press:  02 March 2011

J. K. Mishra
Affiliation:
Physics Department, Indian Institute of Technology Bombay, Powai Mumbai - 400076, India.
S. Dhar
Affiliation:
Physics Department, Indian Institute of Technology Bombay, Powai Mumbai - 400076, India.
M. A. Khaderabad
Affiliation:
Electrical Engineering Department, Indian Institute of Technology Bombay, Powai Mumbai-400076, India
O. Brandt
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin, Germany.
Get access

Abstract

Gd:GaN layers grown with different Gd concentrations by molecular beam epitaxy (MBE) are studied using photoconductivity and photo-thermoelectric power spectroscopy. Our study reveals that the incorporation of Gd produces a large concentration of acceptor-like defects in the GaN lattice. The defect band is found to be located ~450meV above the valence band. Moreover, the concentration of defects is found to increase with the Gd concentration. The effect of annealing on the structural and the magnetic properties of GaN implanted with Gd is also investigated. A clear correlation between the saturation magnetization and the defect density is observed in implanted samples. The colossal magnetic moment per Gd ion and the ferromagnetism observed in this material is explained in terms of the formation of giant defect cluster around each Gd ion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V. F., and Ploog, K. H., Phys. Rev. Lett. 94, 037205 (2005); A. Bedoya-Pinto, J. Malindretos, M. Roever, D. D. Mai, and A. Rizzi, Phys. Rev. B 80, 195208(2009); L. Pérez, G. S. Lau, S. Dhar, O. Brandt and K. H. Ploog, Phys. Rev. B 74, 195207 (2006).Google Scholar
[2] Dhar, S., Kammermeir, T., Ney, A., Perez, L., Ploog, K. H., Melnikov, A., and Wieck, A. D., Appl. Phys. Lett. 89, 062503 (2006); M. A. Khaderabad, S. Dhar, L. Perez, K. H. Ploog, A. Melnikov and A. D. Wieck, Appl. Phys. Lett. 91, 072514(2007).Google Scholar
[3] Martínez-Criado, G., Sancho-Juan, O., Garro, N., Sans, J.A., Cantarero, A., Susini, J., Roever, M., Mai, D.-D., Bedoya-Pinto, A., Malindretos, J., Rizzi, A., Appl. Phys. Lett. 93, 021916 (2008).Google Scholar
[4] Hite, J.K., Thaler, G.T., Khanna, R., Abernathy, C.R., Pearton, S.J., Park, J.H., Steckl, A.J. and Zavada, J.M., Appl. Phys. Lett. 89, 132119 (2006).Google Scholar
[5] Nepal, N., Bedair, S.M., El-Masry, N.A., Lee, D.S., Steckl, A.J., Zavada, J.M., Appl. Phys. Lett. 91, 222503 (2007).Google Scholar
[6] Johnson, V. A. and Lark-Horovitz, K., Phys. Rev. 92, 226 (1953).Google Scholar
[7] Mishra, J. K., Dhar, S. and Brandt, O., Solid State Commun. 150, 2370 (2010).Google Scholar
[8] Rodrigues, Clóves G., Vasconcellos, Áurea R., Luzzi, Roberto and Freire, V. N., J. Appl. Phys. 90, 1879 (2001).Google Scholar
[9] Christel, L. A. and Gibbons, J. F., J. Appl. Phys. 52, 5050 (1981).Google Scholar
[10] Kucheyev, S. O., Williams, J. S., Jagdish, C., Zou, J., and Li, G., Phys. Rev. B 62, 7510 (2000).Google Scholar
[11] Gohda, Y., Oshiyama, A., Phys. Rev. B 78, 161201R (2008).Google Scholar
[12] Dev, P., Xue, Y., Zhang, P., Phys. Rev. Lett. 100, 117204 (2008).Google Scholar