Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T06:40:32.525Z Has data issue: false hasContentIssue false

The Formation of Porous Silicon Layers Formed in a Non-Aqueous Electrolyte

Published online by Cambridge University Press:  28 February 2011

Melissa M. Rieger
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0100
Paul A. Kohl
Affiliation:
Georgia Institute of Technology, Atlanta, Georgia 30332-0100
Get access

Abstract

The formation of porous silicon layers was examined with respect to crystal orientation and the presence of water. Unlike the etching of (111) silicon in aqueous HF solutions, no pores were formed in HF-MeCN. The etching of (111) silicon in HF-MeCN resulted in the formation of triangular pits defined by the {111} planes. A mechanism for the etching is proposed where steric hindrance of the surface terminated hydrogens induces bond strain and enhances the chemical reactivity. The mechanism also accounts for the formation of pores in (100) silicon, and the formation of a highly branched microporous structure when silicon is etched in an aqueous solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Propst, E. K. and Kohl, P. A., J. Electrochem. Soc. 141, 1006 (1994).Google Scholar
2 Chabal, Y. J., Higashi, G. S., Raghavachari, K., and Burrows, V. A., J. Vac. Sci. Technol. A 7, 2104 (1989).Google Scholar
3 Trucks, G. W., Raghavachari, Krishnan, Higashi, G. S., and Chabal, Y. J., Phys. Rev. Lett. 65, 504 (1993).Google Scholar
4 Gerischer, H., Allongue, P., and Costa Kieling, V., Ber. Bunsenges Phys. Chem. 97, 753 (1993).Google Scholar
5 Beale, M. I. J., Benjamin, J. D., Uren, M. J., Chew, N. G., and Cullis, A. G., J. of Crystal Growth 73, 622 (1985).Google Scholar
6 Smith, R. L., Chuang, S.-F., and Collins, S. D., J. Electronic Materials 17, 533 (1989).Google Scholar
7 Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
8 Kittel, C., Introduction to Solid State Physics. 4th Ed. (John Wiley & Sons Inc., New York 1971).Google Scholar
9 Andsager, D., Hilliard, J., and Nayfeh, M. H., Appl. Phys. Lett. 64, 1141 (1994).Google Scholar
10 Teschke, O., Appl. Phys. Lett. 64, 1986 (1994).Google Scholar
11 Perry, C. H., and Lu, F., Appl. Phys. Lett. 60, 3117 (1992).Google Scholar
12 Kendall, D. L., Ann. Rev. Mater. Sci. 9, 373 (1979).Google Scholar
13 Bassous, E., IEEE Trans. Electron. Devices, ED–25, 1178 (1979).Google Scholar
14 Bean, K., IEEE Trans. Electron. Devices, ED–25, 1185 (1979).Google Scholar
15 Boland, J. J., Surface Science 261, 17, (1992).Google Scholar
16 Cotton, F. A., and Wilkinson, G., F. R. S, Advanced Inorganic Chemistry, A Comprehensive Text, 3rd Ed. (John Wiley and Sons, Inc., New York 1972).Google Scholar
17 Shueh-Lin, Yau, Arendt, M., Bard, A. J., Evans, B., Tsai, C., Sarathy, J., and Campbell, J. C., J. Electrochem. Soc. 141, 402 (1994).Google Scholar