Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T13:07:39.775Z Has data issue: false hasContentIssue false

Formation of Silicon and Silicon-Based Semiconductor Materials via Photoinduced Reaction Using Femtosecond Laser

Published online by Cambridge University Press:  04 February 2011

Masakazu Nishimura
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Japan
Shingo Kanehira
Affiliation:
Society-Academia Collaboration for Innovation, Kyoto University, Japan
Masaaki Sakakura
Affiliation:
Society-Academia Collaboration for Innovation, Kyoto University, Japan
Yasuhiko Shimotsuma
Affiliation:
Society-Academia Collaboration for Innovation, Kyoto University, Japan
Kiyotaka Miura
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Japan
Kazuyuki Hirao
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Japan
Get access

Abstract

We have succeeded in silicon (Si) precipitation inside a glass/aluminum (Al) sandwich structure via photoinduced reaction using femtosecond (fs) laser irradiation. The sandwich structure was fabricated by direct bonding below 573 K. Raman spectra at the photomodified area indicated that Si crystals formed at the interface between the glass and metallic Al after the laser irradiation. In addition, the particle size of the precipitated Si could be changed by changing the pulse energy of the laser. Furthermore, we have also focused the laser pulses on Fe-Si film to trigger crystallization and phase transformation of FexSiy at the interface between Fe/Si multilayer and glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Miura, K., Qiu, J., Inouye, H., Mitsuyu, T., and Hirao, K., Appl. Phys. Lett. 71, 3329 (1997).Google Scholar
2. Nolte, S., Will, M., Burghoff, J., and Tuennermann, A., Appl. Phys. A 77, 109 (2003).Google Scholar
3. Schaffer, C. B., Jamison, A. O., and Mazur, E., Appl. Phys. Lett. 84, 1441 (2004).Google Scholar
4. Kanehira, S., Si, J., Qiu, J., Fujita, K., and Hirao, K., Nano Lett. 5, 1591 (2005).Google Scholar
5. Qiu, J., Miura, K., and Hirao, K., Jpn. J. Appl. Phys. 37, 2263 (1998).Google Scholar
6. Kondo, Y., Miura, K., Suzuki, T., Inouye, H., Mitsuyu, T., and Hirao, K., J. Non-Cryst. Solids 253, 143 (1999).Google Scholar
7. Blondeau, J. P., Allam, L., Fleury, V., Simon, P., and Gregora, I., Mater. Sci. Eng. B 100, 27 (2003).Google Scholar
8. Kucheyev, S. O. and Demos, S. G., Appl. Phys. Lett. 82, 3230 (2003).Google Scholar
9. Miura, K., Hirao, K., Shimotsuma, Y., Sakakura, M., and Kanehira, S., Appl. Phys. A 93, 183 (2008).Google Scholar
10. Powalla, M. and Herz, K., Appl. Surf. Sci. 65-66, 482 (1993).Google Scholar
11. Maeda, Y., Umezawa, K., Hayashi, Y., Miyake, K., and Ohashi, K., Thin Solid Films 381, 256 (2001).Google Scholar
12. Herfort, J., Schonherr, H. P., and Ploog, K. H., Appl. Phys. Lett. 83, 3912 (2003).Google Scholar
13. Nagai, H., Mater. Trans. JIM 36, 365 (1995).Google Scholar
14. Ito, M., Nagai, H., Katsuyama, S., and Majima, K., J. Alloys Compd. 315, 251 (2001).Google Scholar
15. Piscanec, S., Cantoro, M., Ferrari, A. C., Zapien, J. A., Lifshitz, Y., Lee, S. T., Hofmann, S., and Robertson, J., Phys. Rev. B 68, 241312(R) (2003).Google Scholar
16. Bermejo, D. and Cardona, M., J. Non-Cryst. Solids 32, 405 (1979).Google Scholar
17. Lefki K, K., Muret, P., Bustarret, E., Boutarek, N., Madar, R., Chevrier, J., Derrien, J., and Brunel, M., Solid State Commun. 80, 791 (1991).Google Scholar