Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:09:09.226Z Has data issue: false hasContentIssue false

Fundamental Aspects Of Polymer Metallization

Published online by Cambridge University Press:  10 February 2011

F. Faupel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany, ff@techfak.uni-kiel.de
T. Strunskus
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany, ff@techfak.uni-kiel.de
M. Kiene
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany, ff@techfak.uni-kiel.de
A. Thran
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany, ff@techfak.uni-kiel.de
C. V. Bechtolsheim
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany, ff@techfak.uni-kiel.de
V. Zaporojtchenko
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Universität Kiel, Kaiserstr. 2, 24143 Kiel, Germany, ff@techfak.uni-kiel.de
Get access

Abstract

Valuable information on the structure and formation of metal-polymer interfaces originates from radiotracer measurements of metal diffusion at the interface, structural investigations by means of transmission electron microscopy, and computer simulations on the interplay of atomic metal diffusion and aggregation. Moreover, X-ray photoemission spectroscopy has largely contributed to our present understanding of the interfacial chemistry and the early stages of interface formation. While reactive metals always form relatively sharp interfaces with polymers, metals of lower reactivity diffuse into polymers at elevated temperatures and have a very strong tendency to agglomerate. The extent of diffusion appears to be determined by the initial stage of the deposition process. Here sticking coefficients recently measured for metals on virgin polymer surfaces deviate markedly from unity. Diffusion into the polymer increases strongly at low deposition rates. No significant diffusion is expected from a continuous metal film unless metal ions are formed at the interface. Metal ions are highly mobile and do not aggregate due to electrostatic repulsion. The model emerging from these observations allows us to predict the salient features of interface formation between metals and polymers in general and particularly with respect to the new low-k polymers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Polymers for Electronic and Photonic Applications, edited by Wong, C. P. (Academic Press, Boston, 1993).Google Scholar
2. Polyimides: Fundamental Aspects and Technological Applications, edited by Ghosh, M. and Mittal, K. L. (Marcel Dekker, New York, 1996).Google Scholar
3. Bohr, M. T., IEEE IEDM, 241 (1995).Google Scholar
4. Low-k Dielectric Constant Materials and Applications in Microelectronics IV, edited by C. Chiang, P. S. Ho, T.-M. Lu and J. Wetzel, Mater. Res. Soc. Proc. this volume).Google Scholar
5. Metallized Plastics 1: Fundamental and Applied Aspects, edited by Mittal, K. L. and Susko, J. R. (Plenum Press, New York, 1989).Google Scholar
6. Metallized Plastics 2: Fundamental and Applied Aspects, edited by Mittal, K. L. (Plenum Press, New York, 1991).Google Scholar
7. Metallized Plastics 3: Fundamental and Applied Aspects, edited by Mittal, K. L. (Plenum Press, New York, 1993).Google Scholar
8. Metallized Plastics: Fundamentals and Applications, edited by Mittal, K. L. (Marcel Dekker, New York, 1998).Google Scholar
9. Kowalczyk, S.P., in Metallization of Polymers, edited by Sacher, E., Pireaux, J. and Kowalczyk, S.P. (ACS Symposium Series 440, American Chem. Soc., Washington DC, 1990) p. 10. Google Scholar
10. Ho, P. S., Haight, R., White, R. C., Silverman, B. D. and Faupel, F., in Fundamentals of Adhesion, edited by Lee, L. H., (Plenum Press, New York, 1991) p. 383.Google Scholar
11. Tromp, R. M., LeGoues, F. K. and Ho, P. S., J. Vac. Sci. Technol. A 3, 782 (1985).Google Scholar
12. LeGoues, F. K., Silverman, B. D. and Ho, P. S., J. Vac. Sci. Technol. A 6, 2200 (1988).Google Scholar
13. Kowalczyk, S. P., Kim, Y. H., Walker, G. F. and Kim, J., Appl. Phys. Lett. 52, 375 (1988).Google Scholar
14. Faupel, F., in Polymer-Solid Interfaces, edited by Pireaux, J. J., Bertrand, P. and Brédas, J. L. (lOP Publishing, 1992) p. 171.Google Scholar
15. Faupel, F., Willecke, R. and Thran, A., Mater. Sci. Eng. R. 22, 155 (1998).Google Scholar
16. Rendulic, K. D., Surface Science 272, 34 (1992).Google Scholar
17. Nowak, S., Mauron, R., Dietler, G. and Schlapbach, L. in Ref. 6.Google Scholar
18. Thran, A., Kiene, M., and Faupel, F., to be published.Google Scholar
19. Jean, Y. C., Zhang, Renwu, Cao, H., Yuan, Jen-Pwu, Huang, Chia-Ming, Nielsen, B. and Asoka-Kumar, P., Phys. Rev. B 56 (14), R8459 (1997).Google Scholar
20. Kajiyama, T., Tanaka, K. and Takahara, A., Macromol. 28, 3482 (1995).Google Scholar
21. Zaporojtchenko, V., Behnke, K. and Faupel, F., to be published.Google Scholar
22. Zaporojtchenko, V., Behnke, K., Strunskus, T. and Faupel, F., to be published.Google Scholar
23. Wetzel, J. T., Smith, D. A. and Appleby-Mougham, G., Mat. Res. Soc. Symp. Proc. 40, 271 (1985).Google Scholar
24. Faghihi, S., Hoffmann, T., Petermann, J. and Martinez-Salazar, J., Macromolecules 25, 2509 (1992).Google Scholar
25. Poteau, R., Heully, J.-L. and Spiegelmann, F., Z. Phys. D 40, 479 (1997).Google Scholar
26. Jeandrau, J. P. in Adhesive Joints:Formation, Characterization and Testing, edited by Mittal, K. L., (Plenum Press, New York, 1984), pp. 121136.Google Scholar
27. Fundamentals of Adhesion, edited by Lee, Lieng-Huang (Plenum Press, New York 1991).Google Scholar
28. Kiene, M., PhD thesis, University of Kiel, 1997.Google Scholar
29. Foitzik, A. and Faupel, F., Mater. Res. Soc. Symp. Proc. 203, 59 (1991).Google Scholar
30. Bechtolsheim, C. v., Peter, R. and Faupel, F., to be published.Google Scholar
31. Faupel, F., Willecke, R., Thran, A., Bechtolsheim, C. v., Kiene, M. and Strunskus, T., in Mittal Festschrift, edited by Ooij, W. J.van and Anderson, H. R. (VSP Publishing) in press.Google Scholar
32. Faupel, F., Hüppe, P. W., Rätzke, K., Willecke, R. and Hehenkamp, T., J. Vac. Sci. Technol. A 10, 92 (1992).Google Scholar
33. Faupel, F., Gupta, D., Silverman, B. D. and Ho, P. S., Appl. Phys. Lett. 55, 357 (1989).Google Scholar
34. Faupel, F., Gupta, D., Silverman, B. D. and Ho, P. S., in Advanced Materials and Processes, edited by Exner, H. E. and Schumacher, V. (Deutsche Gesellschaft fir Materialkunde, Oberursel, 1990), p. 887.Google Scholar
35. Gupta, D., Faupel, F. and Willecke, R., in Diffusion in Amorphous Materials, edited by Jainand, H. and Gupta, D. (The Minerals, Metals & Materials Society, 1994) p. 189.Google Scholar
36. Willecke, R. and Faupel, F., Macromolecules 30, 567573 (1997).Google Scholar
37. Willecke, R. and Faupel, F., J. Polym. Sci. Polym. Phys. 35, 1043 (1997).Google Scholar
38. Thran, A., Willecke, R. and Faupel, F., to be published.Google Scholar
39. Thran, A. and Faupel, F., Defect and Diffusion Forum 143–147 (1), 903 (1997).Google Scholar
40. Bechtolsheim, C. v., PhD thesis, University of Kiel, 1998.Google Scholar
41. Faupel, F. and Kroll, G. in Diffusion in Non-metallic Solids, Landolt Bdmstein, New Series 111133B edited by D. L. Beke, (Springer, Heidelberg), in press.Google Scholar
42. Faupel, F., phys. stat. sol. (a) 134, 9 (1992).Google Scholar
43. Gupta, D., in Diffusion in Thin Films, Encyclopedia Appl. Phys., 5, (VCH Pub. Inc., New York, 1993), p 75.Google Scholar
44. Faupel, F., Adv. Mater., 2, 266 (1990).Google Scholar
45. Willecke, R., PhD thesis, University of Göttingen, 1993.Google Scholar
46. Das, J. H. and Morris, J. E., J. Appl. Phys. 66, 5816 (1989).Google Scholar
47. DiNardo, N. J., in Ref. 5.Google Scholar
48. Matienzo, L. J. and Unertl, W. J., in Ref. 3.Google Scholar
49. Jordan-Sweet, J. L. in Ref. 10.Google Scholar
50. Pireaux, J. J., Grégoire, C., Vermeersch, M., Thiry, P. A., Vilar, M. R. and Caudano, R. in Ref. 9.Google Scholar
51. Meyer, H. M., Anderson, S. G., Atanasoska, Lj. and Weaver, J. H., J. Vac. Sci. Technol. A 6, 30; 1002 (1988).Google Scholar
52. DiNardo, N. J., Demuth, J. E. and Clarke, T. C., Chem. Phys. Lett. 121, 239 (1985).Google Scholar
53. Strunskus, T., Grunze, M., Kochendoerfer, G. and Wöll, Ch., Langmuir 12, 2712 (1996).Google Scholar
54. Kiene, M., Strunskus, T. and Faupel, in Ref. 10.Google Scholar
55. Haight, R., White, R. C., Silverman, B. D. and Ho, P. S., J. Vac. Sci. Technol. A 6, 2188 (1988).Google Scholar
56. Gerenser, L. J., J. Vac. Sci. Technol. A 8, 3682 (1990).Google Scholar
57. Pertsin, A. J., Pashunin, Y. M., Appl. Surf. Sci. 47, 115 (1991).Google Scholar
58. Davis, G. D., Rees, B. J., Whisnant, P. L., J. Vac. Sci. Technol. A 12, 2378 (1994).Google Scholar
59. Strunskus, T., Kiene, M., Willecke, R., Thran, A., Bechtolsheim, C. v. and Faupel, F., Materials and Corrosion 49, 180 (1998).Google Scholar
60. Ohuchi, F. S. and Freilich, S. C., J. Vac. Sci. Technol. A 4, 1039 (1984); A 6, 1004 (1988).Google Scholar
61. Unertl, W. N., High Performance Polymers 2, 15 (1990).Google Scholar
62. Freilich, S. C. and Farnsworth, F. S., Polymer 28, 1912 (1987).Google Scholar
63. Bodö, P. and Sundgren, J. E., J. Vac. Sci. Technol. A 6, 2396 (1988).Google Scholar
64. Atanasoska, L., Anderson, S. G., Meyer, H. M., Lin, Z. and Weaver, J. H., J. Vac. Sci. Technol. A 5, 3325 (1987).Google Scholar
65. Ho, P. S., Hahn, P. O., Bartha, J. W., Rubloff, G. W., LeGoues, F. K. and Silverman, B. D., J. Vac. Sci. Technol. A 3, 739 (1985).Google Scholar
66. Pireaux, J. J., Vermeersch, M., Grégoire, C., Thiry, P. A., Caudano, R. and Clarke, T. C., J. Chem. Phys. 88, 3353 (1988).Google Scholar
67. Anderson, S. G., Meyer, H. M. and Weaver, J. H., J. Vac. Sci. Technol. A 6, 2205 (1988).Google Scholar
68. P. 0. Hahn, Rubloff, G. W., Bartha, J. W., LeGoues, F. K. and Ho, P. S., Mat. Res. Soc. Symp. Proc. 40, 251 (1985).Google Scholar
69. Clabes, J. G., Goldberg, M. J., Viehbeck, A. and Kovac, C. A., J. Vac. Sci. Technol. A 6, 985 (1988).Google Scholar
70. Mack, R. G., Grossman, E. and Unertl, W. N., J. Vac. Sci. Technol. A 8, 3827 (1990).Google Scholar
71. Fontaine, M., Layet, J. M., Grégoire, C. and Pireaux, J. J., Appl. Phys. Lett. 62, 2938 (1993).Google Scholar
72. Kiene, M., Kiesbye, H., Strunskus, T., Faupel, F., to be published.Google Scholar
73. Das, J. H. and Morris, J. E., IEEE Transactions on Components, Packaging and Manufacturing Technology B 17, 620 (1994).Google Scholar
74. Popovici, D., Piyakis, K., Meunier, M. and Sacher, E., J. Appl. Phys. 83 (1), 108 (1998).Google Scholar
75. Matin, N., Serruys, Y. and Calmon, P., Nuclear Instr. and Methods in Physics Research B 108, 179 (1996).Google Scholar
76. Gollier, P.-A. and Bertrand, P., in Proc. 7th Europ. Conf. on Applications of Surface and Interface Analysis, edited by Olefjord, I., Nyborg, L. and Briggs, D. (Wiley, Chichester, 1997) 783.Google Scholar
77. Kiene, M., Strunskus, T., Peter, R. and Faupel, F., to be published.Google Scholar
78. Wong, S. S., Loke, A. L. S., Wetzel, J. T., Townsend, P. H., Vrtis, R. N., Zussman, M. P., in Ref. 4.Google Scholar
79. Loke, A. L. S., Wetzel, J. T., Ryu, C., Lee, W.-J. and Wong, S. S., Symposium on VLSI Technology,Honolulu, 1998.Google Scholar