Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T11:23:14.076Z Has data issue: false hasContentIssue false

GaN Device Processing

Published online by Cambridge University Press:  10 February 2011

S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL
F. Ren
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ
J. C. Zolper
Affiliation:
Office of Naval Research, Arlington, VA
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM
Get access

Abstract

Recent progress in the development of dry and wet etching techniques, implant doping and isolation, thermal processing, gate insulator technology and high reliability contacts is reviewed. Etch selectivities up to 10 for InN over AIN are possible in Inductively Coupled Plasmas using a Cl2/Ar chemistry, but in general selectivities for each binary nitride relative to each other are low (≤2)b ecause of the high ion energies needed to initiate etching. Improved ntype ohmic contact resistances are obtained by selective area Si+ implantation followed by very high temperature (>1300°C) anneals in which the thermal budget is minimized and AIN encapsulation prevents GaN surface decomposition. Implant isolation is effective in GaN, AlGaN and AlInN, but marginal in InGaN. Candidate gate insulators for GaN include AIN, A1ON and Ga(Gd)Ox, but interface state densities are still to high to realize state-of-the-art MIS devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. see for example GaN and Related Materials, ed. Pearton, S.J. (Gordon and Breach, NY 1997) and GaN, ed. J.I. Pankove and T.D. Moustakas (Academic Press, San Diego 1998), and references therein.Google Scholar
2. Craford, M.G., presented at IUVSTA Workshop on GaN, Hawaii, August 1997.0Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y. and Kikoyu, H., Jap. Appl. Phys. Lett. 36 L1059 (1997).10.1143/JJAP.36.L1059Google Scholar
4. Nakamura, S., IEEE J. Selective Topics in Quantum Electron. 3 435 (1997).10.1109/2944.605690Google Scholar
5. Nakamura, S., presented at 3rdIntl. GaN Conference, Tokushima, Japan, October 1997.Google Scholar
6. Shul, R.J., Mat. Res. Soc. Bulletin 22 36 (1997).Google Scholar
7. Pearton, S.J. and Shul, R.J., in GaN, ed. Pankove, J.I. and Moustakas, T.D. (Academic Press, San Diego 1998).Google Scholar
8. Shul, R.J., in GaN and Related Materials, ed. Pearton, S.J. (Gordon and Breach, NY 1997).Google Scholar
9. Shul, R.J., Willison, C.G., Bridges, M.M., Han, J., Lee, J.W., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Donovan, S.M., Zhang, L. and Lester, L.F., J. Vac. Sci. Technol. A. (in press).Google Scholar
10. Shul, R.J., Sullivan, C.T., Snipes, M.B., McClellan, G.B., Hatich, M., Fuller, C.T., Constantine, C., Lee, J.W. and Pearton, S.J., Solid State Electron. 38 2047 (1997).10.1016/0038-1101(95)00034-QGoogle Scholar
11. Pearton, S.J., Hobson, W.S., Abernathy, C.R. and Constantine, C., J. Mater. Sci. - Mater. Electron. 5 185 (1994).10.1007/BF01198952Google Scholar
12. Eddy, C.R. Jr., Glembocki, L.J., Leonhardt, D., Shamanian, V.A., Holm, R.T., Holms, B.D., Butler, J.E. and Pang, S.W., J. Electron. Mater. 26 1320 (1997).10.1007/s11664-997-0078-8Google Scholar
13. Lee, Y.H., Kim, H.S., Kwan, Y.S., Yeom, G.Y., Lee, J.W., Yoo, M.C. and Kim, T.I., J. Vac. Sci. Technol. A. (in press).Google Scholar
14. Ren, F., Pearton, S.J., Shul, R.J. and Han, J., J. Electron. Mater. (in press).Google Scholar
15. Vartuli, C.B., Pearton, S.J., Lee, J.W., Abernathy, C.R., MacKenzie, J.D., Zolper, J.C., Shul, R.J. and Ren, F., J. Electrochem. Soc. 143 3681 (1996).10.1149/1.1837271Google Scholar
16. Youtsey, C., Adesida, I. and Bulman, G., Electron. Lett. 33 245 (1997); Appl. Phys. Lett. 71 2151 (1997).10.1049/el:19970121Google Scholar
17. Zolper, J.C. in GaN and Related Materials, ed. Pearton, S.J. (Gordon and Breach, NY 1997).Google Scholar
18. Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J. and Stall, R.A., Appl. Phys. Lett. 69 2364 (1996).10.1063/1.117526Google Scholar
19. Hong, J., Lee, J.W., MacKenzie, J.D., Donovan, S.M., Abernathy, C.R., Pearton, S.T. and Zolper, J.C., Sernicond. Sci. Technol. 12 1310 (1997).10.1088/0268-1242/12/10/020Google Scholar
20. Pearton, S.J. and Katz, A., Mat. Sci. Eng. B 18 153 (1993).10.1016/0921-5107(93)90127-9Google Scholar
21. Zolper, J.C., Baca, A.G., Shul, R.J., Wilson, R.G., Pearton, S.J. and Stall, R.A., Appl. Phys. Lett. 68 166 (1996).Google Scholar
22. Pearton, S.J., Vartuli, C.B., Zolper, J.C., Yuan, C. and Stall, R.A., Appl. Phys. Lett. 67 1435 (1995).10.1063/1.114518Google Scholar
23. Zolper, J.C., Rieger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W. and Stall, R.A., Appl. Phys. Lett. 69 538 (1996).10.1063/1.117779Google Scholar
24. Aubacher, O., Brandt, M.S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R., Miebr, A., Bergmaier, A. and Dollinger, G., J. Vac. Sci. Technol. B 14 3532 (1996).10.1116/1.588793Google Scholar
25. Harrington, G., Hsin, Y., Liu, Q.Z., Ashcek, P.M., Lau, S.S., Khan, M.A., Yang, J.W. and Chen, Q., Electron. Lett. (in press).Google Scholar
26. Liu, Q.Z., Yu, L.S., Smith, K.V., Deng, F., Tu, C.W., Asbeck, P.M., Yu, E.T. and Lau, S.S., Proc. ECS Symp. GaN and Related Materials, Paris, October 1997.Google Scholar
27. Fan, Z., Mohammad, S., Kim, W., Aktas, O., Botchkarev, A.E. and Morkoc, H., Appl. Phys. Lett. 68 1672 (1996).10.1063/1.115901Google Scholar
28. Cole, M.W., Ren, F. and Pearton, S.J., J. Electrochem. Soc. 144 L275 (1997).10.1149/1.1838007Google Scholar
29. Murakami, M., Koide, Y., Oku, T., Mori, H. and Uchibori, C.J., Proc. 27th SOTAPOCS Conf., ECS Proc. Vol.9721 (1997).Google Scholar
30. Ren, F., Solid State Electron. (in press).Google Scholar