Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T12:09:39.711Z Has data issue: false hasContentIssue false

GaN epilayers and AlGaN/GaN multiple quantum wells grown on freestanding [1100] oriented GaN substrates

Published online by Cambridge University Press:  11 February 2011

C. Q. Chen
Affiliation:
Depart. of Electr. Engineering, University of South Carolina, Columbia, SC29208, USA
M. E. Gaevski
Affiliation:
Depart. of Electr. Engineering, University of South Carolina, Columbia, SC29208, USA
W. H. Sun
Affiliation:
Depart. of Electr. Engineering, University of South Carolina, Columbia, SC29208, USA
E. Kuokstis
Affiliation:
Depart. of Electr. Engineering, University of South Carolina, Columbia, SC29208, USA
J. W. Yang
Affiliation:
Depart. of Electr. Engineering, University of South Carolina, Columbia, SC29208, USA
G. Simin
Affiliation:
Depart. of Electr. Engineering, University of South Carolina, Columbia, SC29208, USA
M. A Khan
Affiliation:
Depart. of Electr. Engineering, University of South Carolina, Columbia, SC29208, USA
H. P. Maruska
Affiliation:
Crystal Photonics, Inc., Sanford, FL 32773, USA
D. W. Hill
Affiliation:
Crystal Photonics, Inc., Sanford, FL 32773, USA
M. M. C. Chou
Affiliation:
Crystal Photonics, Inc., Sanford, FL 32773, USA
J. J. Gallagher
Affiliation:
Crystal Photonics, Inc., Sanford, FL 32773, USA
B. H Chai
Affiliation:
Crystal Photonics, Inc., Sanford, FL 32773, USA
J. H. Song
Affiliation:
Dept. of Information and Communications, Kwangju Institute of Science and Technology, Kwangju, 500–712, Republic of Korea
M. Y. Ryu
Affiliation:
Dept. of Information and Communications, Kwangju Institute of Science and Technology, Kwangju, 500–712, Republic of Korea
P. W. Yu
Affiliation:
Dept. of Information and Communications, Kwangju Institute of Science and Technology, Kwangju, 500–712, Republic of Korea
Get access

Abstract

We report on the homoepitaxial growth of GaN on freestanding [1100] oriented GaN substrates using metalorganic chemical vapor deposition. A proper pretreatment of the substrates was found to be essential for the GaN homoepitaxy. The influence of growth conditions such as V/III molar-ratio and temperature on the surface morphology and optical properties of epilayers was investigated. Optimized pretreatment and growth conditions led to high quality [1100] oriented GaN epilayers with a smooth surface morphology and strong band-edge emission. These layers also exhibited strong room temperature stimulated emission under high intensity pulsed optical pumping. Based on these GaN epilayer, AlGaN/GaN multiple quantum wells have been grown on the freestanding M-plane GaN. Photoluminescence data confirm that built-in electric field for M-plane structures is very weak, and this situation results in a stronger PL intensity in comparison with C-plane multiple quantum wells in tests at low excitation level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Nakamura, S. and Fasol, G., The blue Laser Diode (Spring, Heidelberg, 1997).Google Scholar
2) Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phy. 86, 1 (1999).Google Scholar
3) Bernardini, F., Fiorentini, V. and Vanderbilt, D., Phys. Rev. B 56, 10024 (1997).Google Scholar
4) Deguchi, T., Sekiguchi, K., Nakamura, A., Sota, T., Matsuo, R., Chichibu, S. and Nakamura, S., Jpn. J. Appl. Phys., Part 2 38, L914 (1999).Google Scholar
5) Tripathy, S., Soni, R. K., Asahi, H., Iwata, K., Kuroiwa, R., Asami, K. and Gonda, S., J. Appl. Phys. 85, 8386 (1999).Google Scholar
6) Craven, M. D., Lim, S. H., Wu, F., Speck, J. S. and DenBaars, S. P., Appl. Phys. Lett. 81, 469 (2002).Google Scholar
7) Miskys, C.R., Kelly, M. K., Ambacher, O., Martinez-Criado, G., and Stutzmann, M., Appl. Phys. Lett. 77, 1858 (2000).Google Scholar
8) Waltereit, P., Brandt, O., Trampert, A., Grahn, H. T., Menniger, J., Ramsteiner, M., Reiche, M., and Ploog, K. H., Nature (London) 406, 865 (2000).Google Scholar
9) Waltereit, P., Brandt, O., Ramsteiner, M., Trampert, A., Grahn, H. T., Menniger, J., Reiche, M. and Ploog, K. H., J. Cryst. Growth 227, 437 (2001).Google Scholar
10) Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
11) Sato, H., Sugahara, T., Hao, M., Naoi, Y., Kurai, S., Yamashita, K., Nishino, K. and Sakai, S., Jpn. J. Appl. Phys. 37, 626 (1998).Google Scholar
12) Trager-Cowan, C., Manson-Smith, S. K., Cowan, D. A., Sweeney, F., McColl, D., Mohammed, A., Timm, R., Middleton, P. G., Donnell, K. P. O., Zubia, D. and Hersee, S. D., Mater. Sci. Eng., B 82, 19 (2001).Google Scholar
13) Feltin, E., Beaumont, B., Laügt, M. and De Mierry, P., Vennegues, P., Leroux, M. and Gibart, P., Phys. Status Solidi A 188, 531 (2001).Google Scholar
14) Amano, H., Asahi, T. and Akasaki, I., Jpn. J. Appl. Phys., Part 1 29 205, (1990).Google Scholar