Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T14:11:52.187Z Has data issue: false hasContentIssue false

Generation and Capture of CO2 and CO in Graphite Oxide Stacks during Thermal Reduction

Published online by Cambridge University Press:  31 January 2011

Muge Acik
Affiliation:
mxa084100@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Rodolfo Guzman
Affiliation:
rfg064000@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Yves J Chabal
Affiliation:
chabal@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, Texas, United States
Get access

Abstract

Infrared spectroscopy is used to monitor the evolution of CO2 (2330-2350 cm-1) and CO (2050-2200 cm-1) generated during thermal reduction of graphite oxide. The appearance of CO2 at low temperatures (≤200°C) is associated with oxygen removal in species such as anhydrides, esters, lactols, carboxylic acids and lactones either at the edges or in the distorted basal plane of the GO sheets. At higher temperatures (250°C-750°C), release of CO is observed and may be due to decomposition of CO2 or oxygen-containing species like ethers, carbonyls, phenols or quinones. Observation of these gases is possible in multilayer GO because they are trapped in between the interlayer spacing of GO stacks for a time sufficient for detection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yan, W., Kabalnova, L., Sukpirom, N., Zhang, S., Lerner, M., Journal of Fluorine Chemistry 125, 1703 (2004).Google Scholar
2 Mastalir, Á., Király, Z., Benkö, M., Dékány, I., Catal. Lett. 124, 34 (2008).Google Scholar
3 Tressaud, A., Hagenmuller, P., Journal of Fluorine Chemistry 111, 221 (2001).Google Scholar
4 Bissessur, R., Liu, P.K.Y., Scully, S. F., Synthetic Metals 156, 1023 (2006).Google Scholar
5 Katinonkul, W., Lerner, M. M., Journal of Physics and Chemistry of Solids 68, 394 (2007).Google Scholar
6(a) Ohzuku, T., Iwakoshi, Y., Sawai, K., J. Electrochem. Soc. 140, 2490 (1993). (b) D. Billaud, F. X. Henry, M. Delaurain, P. Willmann, J. Phys. Chem. Solids 57, 775 (1996).Google Scholar
7 Pu, N., Wang, C., Sung, Y., Liu, Y., Ger, M., Materials Letters 63, 1987 (2009).Google Scholar
8 Tenney, C. M. and Lastoskie, C. M., Environmental Progress 25, 343 (2006).Google Scholar
9 Paul, S., Santiso, E. E., Nardelli, M. B., J. Phys. Condens. Matter. 21, 1 (2009).Google Scholar
10 Boehm, H. P., Carbon 32, 759 (1994).Google Scholar
11 Boudou, J. P., Paredes, J. I., Cuesta, A., Martιnez-Alonso, A., J. M. D. Tascón, Carbon 41, 41 (2003).Google Scholar
12(a) Walker, P., Rusinko, F. and Austin, L., Adv. Catal. 11, 133 (1959). (b) J. Strange and P. Walker, Carbon 14, 345 (1976).Google Scholar
13 Yamasue, E., Yamaguchi, H., Nakaoku, H., Okumura, H., Ishihara, K.N., J. Mater. Sci. 42, 5196 (2007).Google Scholar
14(a) Hirsch, A., Angew. Chem. Int. Ed. 41, 1853 (2002). (b) A. Star, T. Han, V. Joshi, J. P. Gabriel and G. Grüner, Adv. Mater. 16, 2049 (2004).Google Scholar
15 Ong, K. G. and Grimes, Craig A., Sensors 1 193 (2001).Google Scholar
16(a) Sheppard, N., Tucker, R., Salehi-Had, S., Sens. Actuators B 10, 73 (1993). (b) P. Dalgaard, O. Mejlholm, H. H. Huss, Int. J. of Food Microbiology 38, 169 (1997). (c) S. L. Well, J. DeSimone, Angew. Chem. Int. Ed. 40, 518 (2001).Google Scholar
17 Matranga, C., Chen, L., Smith, M., Bittner, E., Johnson, J. K., and Bockrath, B., J. Phys. Chem. B 107, 12930 (2003).Google Scholar
18 Gilje, S., Han, S., Wang, M., Wang, K. L., and Kaner, R. B., Nano Lett. 7, 3394 (2007).Google Scholar
19(a) Spectroscopy in Catalysis: an introduction by J.W. Niemantsverdriet, p223. (b) Schniepp, H. C., Li, J. L., McAllister, M. J., J. Phys. Chem. B 110, 8535 (2006).Google Scholar