Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:05:53.370Z Has data issue: false hasContentIssue false

Generation Recombination Noise in GaN Photoconducting Detectors

Published online by Cambridge University Press:  15 February 2011

M. Misra
Affiliation:
Center for Photonics Research, Boston University, MA 02215
D. Doppalapudi
Affiliation:
Center for Photonics Research, Boston University, MA 02215
A.V. Sampath
Affiliation:
Center for Photonics Research, Boston University, MA 02215
T.D. Moustakas
Affiliation:
Center for Photonics Research, Boston University, MA 02215
P.H. McDonald
Affiliation:
Center for Photonics Research, Boston University, MA 02215
Get access

Abstract

Low frequency noise measurements are a powerful tool for detecting deep traps in semiconductor devices and investigating trapping-recombination mechanisms. We have performed low frequency noise measurements on a number of photoconducting detectors fabricated on autodoped n-GaN films grown by ECR-MBE. At room temperature, the noise spectrum is dominated by 1/f noise and thermal noise for low resistivity material and by generation-recombination (G-R) noise for high resistivity material. Noise characteristics were measured as a function of temperature in the 80K to 300K range. At temperatures below 150K, 1/f noise is dominant and at temperatures above 150K, G-R noise is dominant. Optical excitation revealed the presence of traps not observed in the dark, at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1363, (1994)Google Scholar
2. Hacke, P., Nakayama, H., Detchprom, T., Hiramatsu, K. and Sawaki, N., Appl. Phys. Lett. 68, 1362, (1996)Google Scholar
3. Lee, W.I., Huang, T.C., Guo, J.D. and Feng, M.S., Appl. Phys. Lett. 67, 1721, (1995)Google Scholar
4. Gotz, W., Johnson, N.M., Street, R.A., Amano, H. and Akasaki, I., Appl. Phys. Lett. 66, 1340, (1995)Google Scholar
5. Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Shin, M., Skowronski, M. and Greve, D.W., J. Appl. Phys. 84, 870, (1998)Google Scholar
6. Look, D.C., Fang, Z.-Q., Kim, W., Atkas, O., Botchkarev, A., Salvador, A. and Morkoc, H., Appl. Phys. Lett. 68, 3775, (1996)Google Scholar
7. Krtschil, A., Witte, H., Lisker, M., Christen, J., Birkle, U., Einfeldt, S., Hommel, D., J. Appl. Phys. 84, 2040, (1998)Google Scholar
8. Jang, S.L., and Bosman, G., J. Appl. Phys. 65, 201, (1989)Google Scholar
9. Kugler, S., Steiner, K., Seiler, U., Heime, K. and Kuphal, E., Appl. Phys. Lett. 52, 111, (1988)Google Scholar
10. Kirtley, J.R., Theis, T.N., Mooney, P.M., Wright, S.L., J. Appl. Phys. 63, 1541, (1988)Google Scholar
11. Kugler, S., IEEE Trans. Electron. Dev. 35, 623, (1988)Google Scholar
12. Copeland, J. A., IEEE Trans. Electron. Dev. –18, 50, (1971)Google Scholar
13. vanRheenen, A.D., Bosman, G., Zijlstra, R.J., Solid State Electron. 30, 259, (1987)Google Scholar
14. Dmitriev, A.V., Oruzheinikov, A.L., Lomonosov, M.V., MIJ-NSR 1, 46, (1996)Google Scholar
15. Kuksenkov, D.V., Temkin, H., Osinsky, A., Gaska, R., Khan, M.A., J. Appl. Phys. 83, 2142, (1998)Google Scholar