Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T10:30:27.854Z Has data issue: false hasContentIssue false

Ge/Si self-assembled Islands for Photonics Applications

Published online by Cambridge University Press:  01 February 2011

Philippe Boucaud
Affiliation:
philippe.boucaud@ief.u-psud.fr, CNRS-Université Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, université Paris Sud, Orsay, 91405, France
Moustafa El Kurdi
Affiliation:
elkurdi@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Xiang Li
Affiliation:
xiang.li@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Sébastien Sauvage
Affiliation:
sebastien.sauvage@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Xavier Checoury
Affiliation:
xavier.checoury@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Sylvain David
Affiliation:
sylvain.david@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Navy Yam
Affiliation:
vy.yam@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Frédéric Fossard
Affiliation:
frederic.fossard@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Daniel Bouchier
Affiliation:
daniel.bouchier@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Guy Fishman
Affiliation:
guy.fishman@ief.u-psud.fr, CNRS-Univ Paris Sud, Institut d'Electronique Fondamentale, Bâtiment 220, Orsay, F-91405, France
Get access

Abstract

We first present an analysis of the band line-up in the case of SiGe/Si quantum wells and in the case of SiGe/Si self-assembled islands. The conduction and valence band diagrams are obtained from a 30 band k.p Hamiltonian which allows to describe simultaneously conduction and valence band states. The strain field is obtained from a microscopic valence force field theory. The band edge alignment is strongly dependent on the input parameters for this heterosystem. We determine the average valence band offset from photoluminescence measurements of heterostructures grown on relaxed SiGe buffer layers. A type II band line-up is calculated for all Ge compositions in the case of two-dimensional quantum wells and SiGe/Si self-assembled islands. The 30-band formalism allows the determination of the near-infrared interband recombination energy as a function of the self-assembled island structural parameters. We then present recent results obtained by embedding SiGe/Si self-assembled islands in two-dimensional photonic crystals. The photoluminescence of GeSi islands acts as an internal probe to characterize the optical properties of silicon-based two-dimensional photonic crystals designed for the near-infrared spectral range. Cavities, defect-free photonic crystals operated at the second Bragg order and two-dimensional photonic crystals fabricated on top of one-dimensional Bragg mirrors (2D + 1D) are described. We show that, in the case of 2D +1D structures, we can control the quality factor of optical modes at the second Bragg order by matching the resonance conditions and controlling the thickness of the layers. Photonic crystals with pure Ge layers are finally described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

i http://www.luxtera.comGoogle Scholar
ii Liu, A., Jones, R., Liao, L., Rubio, D-S., Rubin, D., Cohen, O., Nicolaescu, R., Paniccia, M., Nature 427, 615 (2004)Google Scholar
iii Jutzi, M., Berroth, M., Whol, G., Oheme, M., Kasper, E., IEEE Photon. Technol. Lett. 17, 1510 (2005).Google Scholar
iv Richard, S., Aniel, F., and Fishman, G., Phys. Rev. B 70, 235 204 (2004)Google Scholar
v Kurdi, M. El, Sauvage, S., Fishman, G., Boucaud, P., Phys. Rev. B 73, 195327 (2006).Google Scholar
vi Colombo, L., Resta, R., and Baroni, S., Phys. Rev. B 44, 5572 (1991).Google Scholar
vii Van De Walle, C. G., and Martin, R. M., Phys. Rev. B 34, 5621 (1986).Google Scholar
viii Sigg, H., Falub, C.V., Müller, E., Borak, A., Grützmacher, D., Fromherz, T., Meduna, M. and Kermarrec, O., Optical Materials 27, 841 (2005).Google Scholar
ix Thewalt, M. L., Harrison, D. A., Reinhart, C. F., and Wolk, J. A., Phys. Rev. Lett. 79, 269 (1997).Google Scholar
x Rieger, M., and Vogl, P., Phys. Rev. B 48, 14276 (1993).Google Scholar
xi Akahane, Y., Asano, T., Song, B. S., and Noda, S., Nature 425, 944 (2003).Google Scholar
xii Pavarini, E., and Andreani, L. C., Phys. Rev. E 66, 036602 (2002).Google Scholar
xiii Bakir, B. Ben, Seassal, C., Letartre, X., Viktorovitch, P., Zussy, M., Cioccio, L. di, Fédéli, J. M., Appl. Phys. Lett. 86, 91111 (2005).Google Scholar
xiv Kuo, Yu-Hsuan, Lee, Y. K., Ge, Y., Ren, S., Roth, J. E., Kamins, T. I., Miller, D. A. B., Harris, J. S., Nature 437, 1334 (2005).Google Scholar