Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T11:46:28.187Z Has data issue: false hasContentIssue false

Graphene Growth on SiC and Metal Surfaces by Solid Source Carbon Deposition

Published online by Cambridge University Press:  01 February 2011

W. C. Mitchel
Affiliation:
william.mitchel@wpafb.af.mil, Air Force Research Laboratory, Materials and Manufacturing Direcctorate, Wright Patterson AFB, Ohio, United States
J. H. Park
Affiliation:
jeongho.park@wpafb.af.mil, Air Force Research Laboratory, Materials and Manufacturing Direcctorate, Wright Patterson AFB, Ohio, United States
H. E. Smith
Affiliation:
Howard.smith@wpafb.af.mil, Air Force Research Laboratory, Materials and Manufacturing Direcctorate, Wright Patterson AFB, Ohio, United States
L. Grazulis
Affiliation:
lawrence.grazulis@wpafb.af.mil, Air Force Research Laboratory, Materials and Manufacturing Direcctorate, Wright Patterson AFB, Ohio, United States
Get access

Abstract

Graphene has been grown by direct deposition of carbon from solid sources on both SiC and Ta films on SiC in an MBE environment. Carbon fluxes were obtained from thermally evaporated C60 and from a heated graphite filament. The graphene films were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. Graphene films on Si-face SiC grown by carbon source MBE (CSMBE) were compared with graphene grown by the standard epitaxial graphene process using SiC thermal decomposition. CSMBE on SiC was found to grow at lower temperatures (1200°C) and to have fewer pits and a more uniform surface. Uniform graphene films were found to grow on Ta films after exposure to both carbon sources at 1200°C but Raman measurements showed no signs of graphene on films exposed to the same temperature without a carbon flux.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I. V. and Firov, A.A., Science 306, 666 (2004).Google Scholar
2 Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N. and Heer, W. A. de, Science 312, 1191 (2006).Google Scholar
3 Charrier, A., Coati, A., Argunova, T., Thibaudau, F., Garreau, Y., Pinchaux, R., Forbeaux, I., Debever, J.-M., Sauvage-Simkin, M. and Themlin, J.-M., J. Appl. Phys. 92, 2479 (2002).Google Scholar
4 Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellog, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Röhrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B., and Seyller, Th., Naturer Mater. 8, 203 (2009).Google Scholar
5 Land, T. A., Michely, T., Behm, R. J., Hemmingerm, J. C., and Comsa, G., Surf. Sci. 264, 261 (1992).Google Scholar
6 Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., and Ruoff, R. S., Science 324, 1321 (2009).Google Scholar
7 Hackley, J., Ali, D., DiPasquale, J., Demaree, J. D., and Richardson, C. J. K., Appl. Phys. Lett. 95, 133114 (2009).Google Scholar
8 Al-Temimy, A., Riedl, C., and Starke, U., Appl. Phys. Lett. 95, 231907 (2009).Google Scholar
9 Moreau, E., Ferrer, F. J., Vignaud, D., Godey, S., and Wallart, X., Phys. Status Solidi A 207, 300 (2010).Google Scholar
10 Seyller, Th., Emtsev, K. V., Gao, K., Speck, F., Ley, L., Tadlich, A., Broekman, L., Riley, J. D., Lackey, R. C. C., Rader, O., Varykhalov, A., and Shikhin, A. M., Surf. Sci. 600, 3906 (2006).Google Scholar
11 Hass, J., Heer, W. A. de and Conrad, E. H., J. Phys.: Condens. Mattter 20, 1 (2008).Google Scholar
12 Malard, L. M., Pimenta, M. A., Dresselhaus, G., and Dresselhaus, M. S., Physics Reports 473, 51 (2009).Google Scholar
13 Hoch, M., Blackburn, P. E., Dingledy, D. P., and Johnston, H. L., J. Chem. Phys. 22 126 (1954).Google Scholar
14 Joseph, M., Sivakumar, N., and Manoravi, P., Carbon 20 2031 (2002).Google Scholar