Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T06:07:04.393Z Has data issue: false hasContentIssue false

Graphene Oxide-Supported Two-Dimensional Microporous Polystyrene

Published online by Cambridge University Press:  02 September 2013

Yi Ouyang
Affiliation:
Materials Science Institute, PCFM Lab and DSAPM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
Dingcai Wu
Affiliation:
Materials Science Institute, PCFM Lab and DSAPM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
Ruowen Fu*
Affiliation:
Materials Science Institute, PCFM Lab and DSAPM Lab, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
Get access

Abstract

In this paper, a microporous-containing graphene oxide/polystyrene (M-GO/PS) was designed and prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of PS from GO surface and then crossrlinking by carbon tetrachloride. The structures of the molecular brush of PS and the related crosslinking M-GO/PS were determined by FTIR, TG, SEM and nitrogen adsorption-desorption analysis. The experimental results showed that PS molecular brush were successfully grown on to the surface of GO. After crosslinking, the PS component was crosslinked into many round nanoparticles with a diameter of 20-30 nm, and therefore the specific surface area of GO/PS obviously increased. This kind of porous M-GO/PS composite was promising for the application in adsorption-desorption energy storage areas.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.CrossRefGoogle Scholar
Nozik, A. J.; Miller, J. Chem. Rev. 2010, 110, 6443.CrossRefGoogle Scholar
Du, A. J.; Zhu, Z. H.; Smith, S. C. J. Am. Chem. Soc. 2010, 132, 2876.CrossRefGoogle Scholar
Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.CrossRefGoogle Scholar
Wu, J. S.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718.CrossRefGoogle Scholar
Miller, R. D.; Chandross, E. A. Chem. Rev. 2010, 110, 1.CrossRefGoogle Scholar
Zangmeister, C. D.; Ma, X. F.; Zachariah, M. R. Chem. Mater. 2012, 24, 2554.CrossRefGoogle Scholar
Chen, H.; Muller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Adv. Mater. 2008, 20, 3557.CrossRefGoogle Scholar
Shen, J. F.; Hu, Y. Z.; Li, C.; Qin, C.; Shi, M.; Ye, M. X. Langmuir 2009, 25, 6122.CrossRefGoogle Scholar
Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Nat. Mater. 2011, 10, 424.CrossRefGoogle Scholar
Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Angew. Chem. Int. Ed. 2010, 49, 10084.CrossRefGoogle Scholar
Hummers, W S, O. R. E. J. Am. Chem. Soc. 1985, 80, 1339.CrossRefGoogle Scholar
Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Prog. Polym. Sci. 2010, 35, 357.CrossRefGoogle Scholar
Goncalves, G.; Marques, P. A. A. P.; Barros-Timmons, A.; Bdkin, I.; Singh, M. K.; Emami, N.; Gracio, J. J. Mater. Chem. 2010, 20, 9927.CrossRefGoogle Scholar