Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T18:31:27.645Z Has data issue: false hasContentIssue false

Group IV Nanocrystals for Silicon Photovoltaics

Published online by Cambridge University Press:  26 January 2011

X. Liu
Affiliation:
Dept. of Physics, CUNY-Graduate Center, New York, NY, United States Dept. of Physics, CUNY-Queens College, Flushing, NY, United States
S. Saini
Affiliation:
Dept. of Physics, CUNY-Graduate Center, New York, NY, United States Dept. of Physics, CUNY-Queens College, Flushing, NY, United States
M. Vanhoutte
Affiliation:
Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
J. Bakalis
Affiliation:
Dept. of Physics, CUNY-Queens College, Flushing, NY, United States
W. Yau
Affiliation:
Dept. of Physics, CUNY-Queens College, Flushing, NY, United States
A. Eshed
Affiliation:
Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
L.C. Kimerling
Affiliation:
Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
N. Pervez
Affiliation:
Depts. of Electrical Engineering & Mechanical Engineering, Columbia University, New York, NY, United States
I. Kymissis
Affiliation:
Depts. of Electrical Engineering & Mechanical Engineering, Columbia University, New York, NY, United States
C.W. Wong
Affiliation:
Depts. of Electrical Engineering & Mechanical Engineering, Columbia University, New York, NY, United States
Get access

Abstract

Silicon nanocrystals (nc-Si), have been shown to act as opto-electronic centers enabling light emission by carrier recombination, when precipitated in a silicon nitride (Si3N4) host. In this work, nc-Si and Germanium nanocrystals (nc-Ge) are studied in sputtered films of Si3N4 and SiGeN for application as tandem cell layers in a Si solar cell. The samples are annealed in a nitrogen gas and forming gas ambient, from 500 ºC to 900 ºC, to investigate the influence of temperature on photoluminescence and photoconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Warga, J., Li, R., Basu, S. N. and Dal Negro, L., Appl. Phys. Lett. 93, 151116 (2008).Google Scholar
2. Park, N. M., Choi, C. J., Seong, T. Y., and Park, S. J., Phys. Rev. Lett. 86, 1355 (2001).Google Scholar
3. Saini, S., Sandland, J.G., Eshed, A., Sparacin, D.K., Dal Negro, L., Michel, J. and Kimerling, L.C., “A high index contrast silicon oxynitride materials platform for Er-doped microphotonic amplifiers,” New Materials for Microphotonics (Mater. Res. Soc. Symp. Proc. 817), 2733 (2004).Google Scholar
4. Dal Negro, L., Yi, J.H., Kimerling, L.C., Hamel, S., Williamson, A. and Galli, G., Appl. Phys. Lett. 88, 183103 (2006).Google Scholar
5. Dal Negro, L., Yi, J.H., Michel, J., Kimerling, L.C., Chang, T.-W.F., Sukhovatkin, V., and Sargent, E.H., Appl. Phys. Lett. 88, 233109 (2006).Google Scholar
6. Taraschi, G., Saini, S., Fan, W.W., Kimerling, L.C. and Fitzgerald, E.A., J. Appl. Phys. 93(12), 99889996 (2003).Google Scholar
7. Chew, H. G., Zheng, F., Choi, W.K., Chim, W.K., Foo, Y.L. and Fitzgerald, E.A., Nanotech. 18, 065302 (2007).Google Scholar
8. Presting, H., Konle, J., Kibbel, H. and Banhart, F., Phys. E 14, 249254 (2002).Google Scholar
9. van der Pauw, L. J., Philips Res. Repts. 13, 19 (1958).Google Scholar
10. Yerci, S., Li, R., Kucheyev, S. O., van Buuren, T., Basu, S. N., and Dal Negro, L., Appl. Phys. Lett. 95, 031107 (2009).Google Scholar
11. Sze, S. M., Ng, K. K., Physics Semiconductor Devices, (Wiley-Interscience, John Wiley & Sons Inc.), p. 791.Google Scholar
12. Schroder, D. K., Semiconductor Material And Device Characterization, (Wiley-Interscience, John Wiley &Sons Inc.), p. 34.Google Scholar