Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:22:24.495Z Has data issue: false hasContentIssue false

Growth Kinetic Limitations During Rapid Solidification

Published online by Cambridge University Press:  15 February 2011

William J. Boettinger*
Affiliation:
Metallurgy Division, National Bureau of Standards, Washington, DC 20234, USA
Get access

Abstract

The importance of growth kinetics in the development of the microstructure of rapidly solidified alloys is described. Growth kinetics are conveniently divided into diffusion kinetics and interface attachment kinetics. The former, which are used extensively for the analysis of slow rate solidification, can be extended to high solidification rates to predict some microstructural features; e.g., the limitations on eutectic growth rate which can promote the formation of metallic glass, and the reduction of microsegregation. At the highest rates interface attachment kinetics must be included. Some microstructural effects of the velocity dependence of the partition coefficient will be described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Perepezko, J. H., in Rapid Solidification Processing: Principles and Technologies II. ed. by Mehrabian, R., Kear, B. H. and Cohen, M. (Claitor's, Baton Rouge, LA, 1980) 5667.Google Scholar
2.Baker, J. C. and Cahn, J. W., in Solidification (ASM, Metals Park, 1971) 23.Google Scholar
3.Flemings, M. C., Solidification Processing (McGraw Hill, New York, 1974) 273.Google Scholar
4.Turnbull, D., in Thermodynamics in Physical Metallurgy (ASM, Metals Park, 1949).Google Scholar
5.Cahn, J. W., Hillig, W. B. and Sears, G. W., Acta Met. 12 (1964) 1421.Google Scholar
6.Jackson, K. A., Uhlmann, D. R. and Hunt, J. D., J. Cryst. Growth 1 (1967) 1.10.1016/0022-0248(67)90003-6Google Scholar
7.Jackson, K. A. and Leamy, H. J., in Laser-Solid Interactions and Laser Processing, ed. by Leamy, H. J. and Poate, J. M. (Am. Inst. of Phys., New York, 1979) 102.Google Scholar
8.Wood, R. F., Wang, J. C., Gilles, G. E. and Kirkpatrick, J. R., in Laser and Electron Beam Processing of Materials, ed. by White, C. W. and Peercy, P. S. (Academic Press, New York, 1980) 37.10.1016/B978-0-12-746850-1.50009-8Google Scholar
9.Chikawa, J. and Sato, F., Jap. J. Appl. Physics 19 (1980) L159 and L577.10.1143/JJAP.19.L159Google Scholar
10.Baker, J. C., Interfacial Partitioning During Solidification, Ph.D. Thesis, MIT (1970) Chapter V.Google Scholar
Also reported by Cahn, J. W., Coriell, S. R. and Boettinger, W. J., in Laser and Electron Beam Processing of Materials, ed. by White, C. W. and Peercy, P. S. (Academic Press, NY, 1980) 89103.Google Scholar
11.Jackson, K. A., Gilmer, G. H. and Leamy, H. J., in Laser and Electron Beam Processing of Materials, ed. by White, C. W. and Peercy, P. S., (Academic Press, NY, 1980) 104110.Google Scholar
12.Aziz, M. J., J. Appl. Phys. 53 (1982).Google Scholar
13.Hillert, M. and Sundman, B., Acta Met. 25 (1977) 11.Google Scholar
14.Wood, R. F., Appl. Phys. Lett. 37 (1980) 302.Google Scholar
15.Cohen, M., Kear, B. H., and Mehrabian, R., in Rapid Solidification Processing: Principles and Technologies II, ed. by Mehrabian, R., Kear, B. H. and Cohen, M. (Claitor's, Baton Rouge, LA, 1980) 123.Google Scholar
16.Bardsley, W., Mullin, J. B., and Hurle, D. T. J., in Solidification of Metals (Iron and Steel Inst. Publ. #110, London, 1968) 93.Google Scholar
17.Cahn, J. W., in Segregation to Interfaces (ASM, Metals Park, 1978) 323.Google Scholar
18.Glicksman, M. E., Schaefer, R. J. and Ayers, J. D., Met. Trans. 7A (1976) 1747.10.1007/BF03186673Google Scholar
19.Huang, S. C. and Glicksman, M. E., Acta Met. 29 (1981) 701.Google Scholar
20.Mehrabian, R., in Rapid Solidification Processing: Principles and Technologies (Claitor's, Baton Rouge, LA, 1978) 927.Google Scholar
21.Jones, H., ibid, 2845.Google Scholar
22.Hsu, S. C., Chakravorty, S. and Mehrabian, R., Met. Trans. 9B (1978) 221.10.1007/BF02653687Google Scholar
23.Levi, C. G. and Mehrabian, R., Met. Trans. 13B (1982).Google Scholar
24.Schaefer, R. J. and Glicksman, M. E., J. Cryst. Growth 5 (1969) 44.Google Scholar
25.Jackson, K. A. and Hunt, J. D., Trans. TMS-AIME 236 (1966) 1129.Google Scholar
26.Jordan, R. M. and Hunt, J. D., Met. Trans. 3 (1972) 1385.10.1007/BF02643021Google Scholar
27.Cline, H. E. and Livingston, J. D., Trans. TMS-AIME 245 (1969) 1987.Google Scholar
28.Verhoeven, J. D., Warner, J. C. and Gibson, E. D., Met. Trans. 3 (1972) 1437.Google Scholar
29.Fisher, D. J. and Kurz, W., Acta Met. 28 (1980) 777.Google Scholar
30.Boettinger, W. J., Biancaniello, F. S., Kalonji, G. M. and Cahn, J. W., in Rapid Solidification Processing: Principles and Technologies II, ed. by Mehrabian, R., Kear, B. H. and Cohen, M. (Claitor's, Baton Rouge, LA, 1980) 5055.Google Scholar
31.Boettinger, W. J., in Rapidly Quenched Metals 4 (Japan Inst. of Metals, Sendai, 1981).Google Scholar
32.Linde, R. K., J. Appl. Phys. 31 (1960) 1136.Google Scholar
33.Boswell, P. G. and Chadwick, G. A., J. Mat. Sci. 12 (1977) 1879.10.1007/BF00566250Google Scholar
34.Murray, J. L., private communication.Google Scholar
35.Beck, D. G., Copley, S. M., and Bass, M., Met. Trans. 12A (1981) 1687.Google Scholar
36.Tamman, G. and Botschwar, A. A., Anorg., Z.Chem. 157 (1926) 27.Google Scholar
37.Kofler, A., Z. Metallkd. 41 (1950) 221.Google Scholar
38.Scheil, E. and Musuda, Y., Aluminum 31 (1955) 51.Google Scholar
39.Kobayashi, K. and Shingu, P. H., in Rapidly Quenched Metals 4 (Japan Institute of Metals, Sendai, 1981).Google Scholar
40.Kurz, W. and Fisher, D. J., Int. Met. Rev. 5–6 (1979) 177.Google Scholar
41.Mollard, F. R. and Flemings, M. C., Trans. TMS-AIME, 239 (1967) 1534.Google Scholar
42.Cline, H. E., Trans. TMS-AIME 242 (1968) 1613.Google Scholar
43.Jordan, R. M. and Hunt, J. D., J. Cryst. Growth 11 (1971) 141.Google Scholar
44.Hurle, D. T. J. and Jakeman, E., ibid. 3/4 (1968) 574.Google Scholar
45.Stràssler, S. and Schneider, N. R., Phy. Cond. Matter 17 (1974) 153.10.1007/BF01475921Google Scholar
46.Hunt, J. D. and Jackson, K. A., Trans. TMS-AIME 239 (1967) 864.Google Scholar
47.Jackson, K. A., ibid 242 (1968) 1275.Google Scholar
48.Burden, M. H. and Hunt, J. D., J. Cryst. Growth 22 (1974) 109.Google Scholar
49.Burden, M. H. and Hunt, J. D., J. Cryst. Growth 22 (1974) 328.Google Scholar
50.Kurz, W. and Fisher, D. J., Acta Met. 29 (1981) 11.Google Scholar
51.Adam, C. M. and Hogan, L. M., J. Australian Inst. of Met. 17 (1972) 81.Google Scholar
52.Hughes, I. R. and Jones, H., J. Mat. Sci. 11 (1976) 1781.Google Scholar
53.Jones, H., Aluminum 54 (1978) 274.Google Scholar
54.Mullins, W. W. and Sekerka, R. F., J. Appl. Phys. 35 (1964) 444.Google Scholar
55.Coriell, S. R. and Sekerka, R. F., in Rapid Solidification Processing: Principles and Technolgies II, ed. by Mehrabian, R., Kear, B. H. and Cohen, M. (Claitor's, Baton Rouge, LA, 1980) 3549.Google Scholar
56.Schaefer, R. J., Coriell, S. R., Mehrabian, R., Fenimore, C., and Biancaniello, F. S., this proceedings.Google Scholar
57.Allen, D. J. and Hunt, J. D., Met. Trans. 10A (1979) 1389.Google Scholar
58.Coriell, S. R., Boivert, R. F. and Rehm, R. G., J. Cryst. Growth 54 (1981) 167.Google Scholar
59.Boswell, P. G. and Chadwick, G. A., J. Mat. Sci. 14 (1979) 1269.Google Scholar
60.Kelly, T. F. and VanderSande, J. B., in Rapid Solidification Processing: Principles and Technologies II, ed. by Mehrabian, R., Kear, B. H. and Cohen, M. (Claitor's, Baton Rouge, LA, 1980) 100111.Google Scholar