Published online by Cambridge University Press: 01 February 2011
Highly oriented ?-Al2O3 thin films on 4H-SiC were engineered to demonstrate their potential as a crystalline high-k gate dielectric in SiC power MOSFETs. As-deposited Al2O3 thin films grown on 4H-SiC (0001) by thermal atomic layer deposition (ALD) were amorphous as determined by in-situ reflection high-energy electron diffraction (RHEED). Upon annealing in N2 at 1100°C, the film crystallized to the ?-Al2O3 phase as observed by RHEED, high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Based on Fourier transforms of the HRTEM image, an epitaxial relationship of ?-Al2O3 (111) on 4H-SiC (0001) was observed in which ?-Al2O3 (-110) is oriented with 4H-SiC (-12-10). This orientation was further confirmed by XRD analysis in which only the ?-Al2O3 (111) and (222) peaks were observed. An abrupt interface of both amorphous and crystalline Al2O3 with 4H-SiC was determined by HRTEM.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.