Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T07:55:29.482Z Has data issue: false hasContentIssue false

Growth Stress in SiO2 Formed by Oxidation of SiC

Published online by Cambridge University Press:  15 June 2012

Randall S. Hay*
Affiliation:
Air Force Research Laboratory, Materials and Manufacturing Directorate 2230 10th St, Bldg 655, WPAFB, OH
Get access

Abstract

Growth stresses in amorphous SiO2 scales formed during SiC fiber oxidation were calculated. A numerical method using Deal-Grove oxidation kinetics and shear-stress dependent SiO2 viscosity was used. Initial compressive stresses in SiO2 of ∼25 GPa from the 2.2× oxidation volume expansion rapidly relaxes. At >1200°C, viscous flow of amorphous SiO2 further relaxes stress to negligible levels. At 700° - 900°C, axial and hoop stress at the GPa level persist in SiO2 near the SiC-SiO2 interface. Radial expansion of the scale causes hoop stress to become tensile, and axial stresses are driven to tensile values by the Poisson effect. These tensile stresses can be >1 GPa for thick scales formed at lower temperatures on surfaces with high curvature. Approximate analytical expressions for growth stress are discussed. Effects of viscosity variation as well as other assumptions and limitations of the calculation method are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hay, R.S., Fair, G.E., Bouffioux, R., Urban, E., Morrow, J., Hart, A., Wilson, M., Ceram. Eng. Sci. Proc., 32 (2011) 3954.Google Scholar
2. Hay, R.S., Fair, G.E., Bouffioux, R., Urban, E., Morrow, J., Somerson, J., Hart, A., Wilson, M., J. Am. Ceram. Soc., 94 (2011) 39833991.Google Scholar
3. Chollon, G., Pallier, R., Naslain, R., Laanani, F., Monthioux, M., Olry, P., J. Mater. Sci., 32 (1997) 327347.Google Scholar
4. Garikipati, K., Rao, V.S., J. Computational Physics, 174 (2001) 138170.Google Scholar
5. Rao, V.S., Hughes, T.J.R., Int. J. Numerical Methods in Engineering, 47 (2000) 341358.Google Scholar
6. Sutardja, P., Oldham, W.G., Electron Devices, IEEE Transactions on, 36 (1989) 24152421.Google Scholar
7. Pomp, A., Zelenka, S., Strecker, N., Fichtner, W., IEEE Trans. Elec. Dev., 47 (2000) 19992007.Google Scholar
8. Uematsu, M., Kageshima, H., Shiraishi, K., Nagase, M., Horiguchi, S., Takahashi, Y., Solid-State Electronics, 48 (2004) 10731078.Google Scholar
9. Kao, D.-B., McVittie, J.P., Nix, W.D., Saraswat, K.C., IEEE Trans. Electron. Dev., 35 (1988) 2537.Google Scholar
10. Rafferty, C.S., Borucki, L., Dutton, R.W., Appl. Phys. Lett., 54 (1989) 15161518.Google Scholar
11. Oh, E., Walton, J., Lagoudas, D., Slattery, J., Acta Mechanica, 181 (2006) 231255.Google Scholar
12. Mihalyi, A., Jaccodine, R.J., Delph, T.J., Appl. Phys. Lett., 74 (1999) 19811983.Google Scholar
13. Yen, J.-Y., Hwu, J.-G., J. Appl. Phys., 89 (2001) 30273032.Google Scholar
14. Gauthier, W., Pailler, F., Lamon, J., Pailler, R., J. Am. Ceram. Soc., 92 (2009) 20672073.Google Scholar
15. Hay, R.S., J. Appl. Phys., 111 (2012) 063527.Google Scholar
16. Hsueh, C.H., Evans, A.G., J. Appl. Phys., 54 (1983) 66726686.Google Scholar
17. Navi, M., Dunham, S.T., J. Electrochem. Soc., 144 (1997) 367371.Google Scholar
18. Hu, S.M., J. Appl. Phys., 70 (1991) R53R80.Google Scholar
19. Causin, P., Restelli, M., Sacco, R., Computer Methods in Applied Mechanics and Engineering, 193 (2004) 36873710.Google Scholar
20. Senez, V., Collard, D., Ferreira, P., Baccus, B., IEEE Trans. Elec. Dev., 43 (1996) 720731.Google Scholar
21. Wilson, L.O., Marcus, R.B., J. Electrochem. Soc., 134 (1987) 481490.Google Scholar
22. Deal, B.E., Grove, A.S., J. Appl. Phys., 36 (1965) 37703778.Google Scholar
23. Tsui, Y.C., Clyne, T.W., Thin Solid Films, 306 (1997) 3451.Google Scholar
24. Senez, V., Collard, D., Baccus, B., Brault, M., Lebailley, J., J. Appl. Phys., 76 (1994) 32853295.Google Scholar
25. Eyring, H., J. Chem. Phys., 4 (1936) 283291.Google Scholar
26. Uchida, T., Nishi, K., Jap. J. Appl. Phys., 40 (2001) 67116719.Google Scholar
27. Doremus, R.H., J. Appl. Phys., 92 (2002) 76197629.Google Scholar
28. Frost, H.J., Ashby, M.F., Deformation Mechanism Maps, Pergamon Press, 1982.Google Scholar