Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T05:30:52.140Z Has data issue: false hasContentIssue false

Guiding And Confining Light In Nanoporous Cu4O3-C Composite Thin Films

Published online by Cambridge University Press:  26 February 2011

Mahua Das
Affiliation:
dmahua2006@gmail.com, Indian Institute of Science, Materials Research Centre, C.V. Raman Avenue, Bangalore, 560012, India
S. A. Shivashankar
Affiliation:
shivu@mrc.iisc.ernet.in, Indian Institute of Science, Materials Research Centre, C.V. Raman Avenue, Bangalore, 560012, India
Get access

Abstract

Nanoporous Cu4O3 – C composite thin films with spherical and bicontinuous elongated pore structure have been grown on stainless steel substrates by metalorganic chemical vapour deposition technique using a single source tetranuclear metalorganic complex as precursor. The guiding and confinement of light in these quasi-periodic structures has been investigated by glancing incidence (75°) infrared spectroscopy at room temperature. The transmittance spectra of these films between wave number 10000 – 400 cm−1 reveal light confinement modes in photonic band gap between 6127-8839 cm−1 and propagation modes between 5094-400 cm−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987).Google Scholar
2. John, S., Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
3. Fan, S., et al. Phys. Rev. Lett. 80, 960 (1998).Google Scholar
4. Chow, E., et al. Opt. Lett. 26, 286 (2001).Google Scholar
5. Mekis, A., et al., Phys. Rev. Lett. 77, 3787 (1996).Google Scholar
6. Rennon, S., et al. Electron. Lett. 37, 690 (2001).Google Scholar
7. Slusher, R. andEggleton, B., “Nonlinear Photonic Crystals”, (Springer-Verlag, 2003).Google Scholar
8. Rostovtsev, Y., et al. Phy. Rev. A 57, 4919 (1998).Google Scholar
9. Perina, Jan, Jr. et al. Phys. Rev. A 70, 043816 (2004).Google Scholar
10. Petrosyan, D., et al. Phys. Rev. A 64, 023810 (2001).Google Scholar
11. Kurizki, G., et al. “Microcavities and Photonic Band gaps: Physics and Applications”, Ed. J., Rarity and C., Weissbuch (Kluwer, London, 1996), p. 559.Google Scholar
12. Bowden, C., andZheltikov, A., J. Opt. Soc.Am.B 19, 2046 (2002).Google Scholar
13. Kosaka, H., et al. Phys. Rev. B 58, R100096 (1998).Google Scholar
14. Notomi, M., et al. Phys. Rev. B 62, 10696 (1998).Google Scholar
15. Zhang, X., et al. Appl. Phys. Lett. 85, 241 (2004).Google Scholar
16. Schriemer, H., et al. Phys. Rev. A 63, 011801R (2000).Google Scholar
17. Centini, M., et al. Phy. Rev. E 67, 036617 (2003).Google Scholar
18. Singh, M., et al. Phys. Rev. A 69, 023807 (2004).Google Scholar
19. Painter, O. andSrinivasan, K., Opt. Lett. 27, 339 (2002).Google Scholar