Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:03:24.210Z Has data issue: false hasContentIssue false

Heavy Ion induced Damage and Disorder in Intermetallic Compounds with the B2 Structure

Published online by Cambridge University Press:  21 February 2011

John L. Brimhall
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA 99352
Homer E. Kissinger
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, WA 99352
Get access

Abstract

Although the B2-type intermetallic compounds, NiAl, FeAl, NiTi and FeTi all maintained a high degree of order during irradiation, metastable phase formation was observed. Dislocation loops and network developed in NiAl and FeAl during irradiation and a nickel rich, fcc phase, most likely disordered Ni3Al, formed in NiAl after high doses. The build-up of constitutional vacancies (excess vacancies on Ni sites) and subsequent elemental partitioning of Ni and Al can explain the formation of a nickel rich phase in NiAl. No metastable phases formed in FeAl. Dislocation loop structures did not develop in NiTi or FeTi, rather a transformation to an amorphous phase occurred at relatively low doses. The amorphous transformation results when the free energy of the crystal lattice containing a high defect concentration exceeds the free energy of the amorphous configuration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brimhall, J. L., Kissinger, H. E. and Charlot, L. A., Rad. Eff. 77, 237 (1983).Google Scholar
2. Manning, I. and Mueller, G., Comput. Phys. Comm., 1, 85 (1974)Google Scholar
3. Brimhall, J. L., Kissinger, H. E., and Peltoin, A. R., Ion. Implantation and Ion Beam Processing of Materials, (Elsevier Pub. Co., 1983).Google Scholar
4. Liu, H. C., Kinoshita, C. and Mitchell, T. E., Phase Stability During Irradiations, ed. by Holland, J.R., Mansur, C. K. and Potter, D. I., (AIME, NY, 1981) p. 343.Google Scholar
5. Riviere, J. P., Dinhut, J. F. and Delafond, J., Nucl. Inst. and Meth., 182/183, 495 (1981).Google Scholar
6. Riviere, J. P., Ruault, M. O., Schack, M., Phil Mao A., 47, 255 (1983).Google Scholar
7. Riviere, J. P. and Grilhe, J., Proc. Int. Conf. Fundamental Aspects of Radiation Damage in Metals, ed by Robinson, M. T. and Young, F. W., CONF 751006 (NTIS, Springfield, VA) p. 636.Google Scholar
8. Riviere, J. P., Rad. Eff., 33U, 21(1977).Google Scholar
9. Mukai, T., Kinoshita, C. and Kitajima, S., Phil Mag A., 47, 255 (1983).Google Scholar
10. Riviere, J. P., Scripta Met., 14, 503 (1980).CrossRefGoogle Scholar
11. Pelton, A.R., Proc. of 7th Intl. Conf. on High Voltage Electron Microscopy. ed. by Fisher, R.M., Gronsky, R. and Westmacott, K. H., CONF830819 (NTIS, Springfield, VA, 1983) p. 245.Google Scholar
12. Schulson, E. M., J. Nucl. Mat., 83, 239 (1979).Google Scholar
13. Roussouw, C. J., Phys. Stat. Sol. (a), 80, 631 (1983).Google Scholar
14. Bykov, V. N., Troyan, V. A., Zdoro-vtseva, G. G. and Khaimovich, V. S., Phys. Stat. Sol.(a), 321, 53(1975).Google Scholar
15. Nastasi, M., Hung, L. S., Johnson, H. H., Mayer, J. M. and Williams, J. M., “Ion Irradiation Induced Phase Transformation in Ni2Al3” submitted to J. Appl. Phys.Google Scholar
16. Potter, D. I. in Phase Transformation During Irradiation, ed. by Nolfi, F. (Appl. Science Pub, N.Y., 1983) p. 213.Google Scholar
17. Liou, K. Y. and Wilkes, P., J. Nucl. Mat., 87, 317 (1979).Google Scholar
18. Georgopoulos, P. and Cohea, J. B., Acta Met., 29, 1535 (1981).Google Scholar
19. Howe, L. M. and Rainville, M. H., Phil. Mag A, 39, 195(1979).Google Scholar