Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T11:10:25.906Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth and Phase Transition Properties of Vanadium Dioxide Thin Films on Different Orientations of Sapphire Substrates

Published online by Cambridge University Press:  21 March 2011

Z.P. Wu
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R.Chima
H. Naramoto
Affiliation:
Japan Atomic Energy Research Institute Watanuki 1233, Takasaki, Gunma 370-1292, Japan
Get access

Abstract

Vanadium dioxide thin films have been deposited on sapphire substrates with different orientations by pulsed laser ablation. The samples are analyzed by x-ray diffraction and pole figures to determine epitaxial relationship. The crystal quality is evaluated by RBS/Channeling techniques. The results has shown that the growth of VO2 is of strong substrate dependence, the film on (0001) sapphire substrate exhibits better crystal quality than that on (1120) and (0112) sapphire substrates. The epitaxy can be divided into two processes, the first is surface symmetry determined oriented growth, and the second is in-plane oriented growth dominated by the minimization of in-plane lattice mismatch. More over, different substrates result in different defect microstructures, 120o twin is observed in VO2 film on (0001) substrate while 180o on (1120) and no twin on (0112), which also reflects the surface symmetries of the substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Merwe, J.H.Van der, J.Appl.Phys. 34, 117(1963)Google Scholar
2 Polyakov, S.N., Rakhinov, A.T., Suetin, N.V., Timofeev, M.A. and Pilevskii, A.A., JETP lett, 65(1997), p.435 Google Scholar
3 Hellwig, O., Theis-Brohl, K., Wilhelmi, G., Zabel, H. and Stierle, A., Thin Solid Films 318(1998), p.201 Google Scholar
4 Koinuma, H., Yoshimoto, M., Nagata, H. and Tsukahara, T., Solid State Commun. 80(1991), p.9 Google Scholar
5 Tabata, H., Tanaka, H. and Kawai, T., Appl.Phys.Lett. 65(1994), p.1970 Google Scholar
6 Morin, F.J., Phys.Rev.Lett. 3(1959),p.34 Google Scholar
7 Khakhaev, I.A., Chudnovski, F.A. and Shadrin, E.B., Phys. Solid State 36(1994), p.898 Google Scholar
8 Jorgenson, G.V. and Lee, J.C., Solar Energy Mater. 14(1986), p.205 Google Scholar
9 Balbery, I. and Trokman, S., J.Appl.Phys. 46(1975), p.2111 Google Scholar
10 Balducci, G., Gigli, G. and Guido, M., J.Chem.Phys. 79(1983), p.5616 Google Scholar
11 Borek, M., Qian, F., Nagabushnam, V. and Singh, R.K., Appl.Phys.Lett. 63(1993), p.3288 Google Scholar
12 Kim, D.H. and Kwok, H.S., Appl.Phys.Lett. 65(1994), p.3188 Google Scholar
13 DeNatale, J.F., Hood, P.J and Harker, A.B., J.Appl.Phys. 70(1991), p.176 Google Scholar
14 Hwang, D.M., Ravi, T.S., Ramesh, R., Siu-Wai Chan, Chen, C.Y., and Nazar, L., Wu, X.D., Inam, A. and Venkatesan, T., Appl.Phys.lett. 57(1990), p.1690 Google Scholar
15 Zheleva, T., Jagannadham, K. and Narayan, J., J.Appl.Phys. 75(1994), p.861 Google Scholar
16 Vispute, R.D., Narayan, J., Wu, Hong and , Jagannadham, J.Appl.Phys. 77(1995), p.4724 Google Scholar
17 Naramoto, H, McHargue, C.J., White, C.W., Williams, J.M., Holland, O.W., Abraham, M.M. and Appleton, B.R., Nucl.Instr.Meth. 209–210(1983), p.1159 Google Scholar
18 Phillips, D.S., Heuer, A.H. and Michell, T.E., Philosophical Magazine A.42, No.3(1980), p.405 Google Scholar