Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T03:30:48.979Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth of Epitaxial C60-Thin Films on Mica(001)

Published online by Cambridge University Press:  15 February 2011

S. Henke
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg
K.H. Thürer
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg
S. Geier
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg
B. Rauschenbach
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg
B. Stritzker
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg
Get access

Abstract

On mica(001) thin C60-films are deposited by thermal evaporation at substrate temperatures from room temperature up to 225°C. The dependence of the structure and the epitaxial alignment of the thin C60-films on mica(001) on the substrate temperature and the film thickness up to 1.3 μm at a well-defined deposition rate (0.008 nm/s) is investigated by atomic force microscopy and X-ray diffraction. The shape and the size of the C60-islands, which have an influence on the film quality at larger film thicknesses, are sensitively dependent on the substrate temperature. At a film thickness of 200 nm the increase of the substrate temperature up to 225°C leads to smooth, completely coalesced epitaxial C60-thin films characterized by a roughness smaller than 1.5 nm, a mosaic spread Δω of 0.1° and an azimuthal alignment ΔΦ of 0.45°.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schmicker, D., Schmidt, S., Skofronick, J. G., Toennies, J. P., and Vollmer, R., Phys. Rev. B 44, 10995 (1991)Google Scholar
[2] Krakow, W., Rivera, N. M., Roy, R. A., Ruoff, R. S., Cuomo, I. J., Appl Phys. A 56,185 (1993)Google Scholar
[3] Busmann, H. G., Riss, R., Gaber, H., Hertel, I. V., Surf. Sci 289, 381 (1993)Google Scholar
[4] Fischer, J. E., Werwa, E., Heiney, P. A., Appl. Phys. A 56, 193 (1993)Google Scholar
[5] Faratash, A., Appl. Phys. Lett. 64, 1877 (1994)Google Scholar
[6] Henke, S., Thürer, K. H., Lindner, J. K. N., Rauschenbach, B., Stritzker, B., J. AppL Phys. 76, 3337 (1994)Google Scholar
[7] Henke, S., Thürer, K. H., Geier, S., Rauschenbach, B., Stritzker, B., Appl. Phy s. A, in pressGoogle Scholar
[8] Henke, S., Thürer, K. H., Rauschenbach, B., Stritzker, B., in preparationGoogle Scholar
[9] Gaber, H., AppL Phys. Lett. 65,378 (1994)Google Scholar
[10] Volmer, M., Kinetik der Phasenbildung, Steinkopf, Dresden 1939 Google Scholar
[11] Baski, A A., Fuchs, H., Surf. Sci 313,275 (1994)Google Scholar
[12] Pashley, D. W., Materials Science and Technology, Vol 15, Processing of Metals and Alloys, VoL ed.: Cahn, R. W., VCH-Verlagsgesellschaft, Weinheim, 1991 Google Scholar