Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:20:37.812Z Has data issue: false hasContentIssue false

High Energy Transmission Electron Diffraction From Surface Monolayers During Silicon Oxidation

Published online by Cambridge University Press:  22 February 2011

Frances M. Ross
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. Murray Gibson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We have examined the behaviour of the clean Si (111) 7x7 reconstructed surface during exposure to oxygen over a range of temperature and pressure in a UHV transmission electron microscope (TEM). We present preliminary results of our study, discussing both the etching of the silicon surface by oxygen at elevated temperatures and lower oxygen pressures, and its roughening and oxidation at higher oxygen pressures. We achieve great sensitivity to the structure of the surface monolayers by analysing the diffraction of high energy electrons by these surface layers and can resolve the movement of individual monatomic surface steps. Our most dramatic result to date is a demonstation that surface steps do not move during the growth of native oxide.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McDonald, M. L., Gibson, J. M. and Unterwald, F. C., Rev. Sci. Instrum. 60, 700 (1989)CrossRefGoogle Scholar
2. Takayanagi, K., Tanishiro, Y., Takahashi, S. and Takahashi, M., Surf. Sci. 164, 367 (1985)Google Scholar
3. Gibson, J. M., in Atomic Scale Structure of Interfaces, edited by Bringans, R. D., Feenstra, R. M. and Gibson, J. M., Mat. Res. Soc. Proc. 159, 179 (1990)Google Scholar
4. Gibson, J. M., Lanzerotti, M. Y. and Elser, V., Appl. Phys. Lett. 55, 1394 (1989)CrossRefGoogle Scholar
5. Cherns, D., Phil. Mag. 30, 549 (1974)Google Scholar
6. Smith, F. and Ghidini, G., J. Electrochem. Soc. 129. 1300 (1982)Google Scholar
7. Lander, J. and Morrison, J., J. Appi. Phys. 33, 2089 (1962)Google Scholar
8. Gibson, J. M. and Lanzerotti, M. Y., Nature 340, 128 (1989)Google Scholar
9. Mott, N. F., Phil. Mag. B 55, 117 (1987)Google Scholar
10. Gibson, J. M., Gossmann, H.-J., Bean, J. C., Tung, R. T. and Feldman, L. C., Phys. Rev. Lett. 56, 355 (1986)CrossRefGoogle Scholar
11. Gupta, P., Mak, C. H., Coon, P. A. and George, S. M., Phys. Rev. B 40, 7739 (1989)CrossRefGoogle Scholar
12. Derrien, J. and Commandré, M., Surf. Sci. 118, 32 (1982)Google Scholar
13. Ross, F. M., Gibson, J. M. and Stobbs, W. M., in Atomic Scale Structure of Interfaces, edited by Bringans, R. D., Feenstra, R. M. and Gibson, J. M., Mat. Res. Soc. Proc. 159, 185 (1990)Google Scholar
14. Wolff, S., Wagner, S. and Gibson, J. M., Surf. Sci. Lett., in pressGoogle Scholar
15. Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965)Google Scholar
16. Shimizu, N., Tanishiro, Y., Kobayashi, K., Takayanagi, K, Yagi, K, Ultramic. 18, 453 (1985)Google Scholar