Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:46:59.709Z Has data issue: false hasContentIssue false

High Resistivity Oxygen-Doped AlGaAs For Power Devices

Published online by Cambridge University Press:  10 February 2011

Yuichj Sasajima
Affiliation:
Tsukuba Research Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, lbaraki 300-32, Japan
Noboru Fukuhara
Affiliation:
Tsukuba Research Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, lbaraki 300-32, Japan
Masahiko Hata
Affiliation:
Tsukuba Research Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, lbaraki 300-32, Japan
Takayoshi Maeda
Affiliation:
Tsukuba Research Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, lbaraki 300-32, Japan
Hideyo Okushi
Affiliation:
Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

We have succeeded in making high resistive AlxGa1−xAs by oxygen doping (AlxGa1−xAs:O) and applying them to buffer layer for power metal-semiconductor field effect transistor (MESFET). Samples of Al0.3Ga0.7As:O were prepared by metalorganic vapor phase epitaxy (MOVPE). Oxygen-related levels in A10.3Ga0.7As:O were investigated by applying isothermal capacitance transient spectroscopy (107S) to MIS (Al/Al0.3Ga0.7As:O/n-GaAs) diodes. A breakdown voltage and a two terminal gate breakdown voltage of the MESFET with the Al0.3Ga0.7As:O buffer layer became higher as increasing in the intensity of oxygen related peak in the ICTS spectra. These results indicate that the electrically active oxygen in the Al1−xGa1−xAs:O is an important factor for the device characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chow, T.P. and Tyagi, R., IEEE Trans. Electron Devices 41, 1481 (1994)Google Scholar
2. Khan, M.A., Kuznia, J.N., Olson, D.T., Schaff, W., Burm, G. and Shur, M.S., Appl. Phys. Left. 65, 1121 (1994)Google Scholar
3. Khan, M.A., Shur, M.S., Kuznia, J.N., Burm, J. and Schaff, W., Appl. Phys. Lett. 66, 1083 (1995)Google Scholar
4. Weitzel, C., Palmour, J., Carter, C. Jr.,, Nordquist, K., Moore, K. and Allen, S., in Compound Semiconductors 1994, edited by Goronkin, H. and Mishra, U. (Institute of Physics Publishing, Bristol, 1994) p.389.Google Scholar
5. Sriram, S., Augustine, G., Burk, A., Glass, R., Hobgood, H., Orphanos, P., Rowland, L., Smith, T., Brandt, C., Driver, M. and Hopkins, R., IEEE Electron Device Lett. 17,369 (1996)Google Scholar
6. Chen, C.-L., Smith, F.W., Calawa, A.R., Mahoney, L.J. and Manfra, M.J., IEEETrans. Electron Devices 36, 1546 (1989)Google Scholar
7. Terao, H. and Sunakawa, H., J. Cryst. Growth 68,157 (1984)Google Scholar
8. Okushi, H. and Tokumaru, Y., Jpn. J. Appl. Phys. 19, L335 (1980)Google Scholar
9. Yoshino, J., Tachikawa, M., Matsuda, N., Mizuta, M. and Kukimoto, H., Jpn. J. Appl. Phys. 23, L29 (1984)Google Scholar