Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:00:47.297Z Has data issue: false hasContentIssue false

High Strength, Porous, Brittle Materials

Published online by Cambridge University Press:  21 February 2011

J. S. Haggerty
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
A. Lighfoot
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
J. E. Ritter
Affiliation:
University of Massachusetts, Amherst, MA 01003
S. V. Nair
Affiliation:
University of Massachusetts, Amherst, MA 01003
Get access

Abstract

Contrary to existing models, strengths need not be a strong function of porosity for intermediate density, brittle materials. Flaw sizes can remain small (<50μm) if the void space is distributed uniformly in minimum dimension pores. For RBSN, fracture toughness decreases linearly with porosity for 0< porosity <40%. Strains to failure and specific strengths of these materials are higher than fully dense counterparts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ryshkewitch, E., J. AM. CERAM. SOC. 36 (2), 6568 (1953).Google Scholar
2. Rice, R.W., McKinney, K.R., Wu, C. Cm., Freiman, S.W., and Donough, W.J.M., J. MAT. SCl. 20, 13921406 (1985).Google Scholar
3. Ashby, M.F., METAL. TRANS. A, Volume 14A, pp. 1755–69, (1983).CrossRefGoogle Scholar
4. Nielsen, L.F., J. AM. CERAM. SOC. 73 (9), 2684–89 (1990).Google Scholar
5. Gent, A.N. and Thomas, A.G., RUBBER CHEM. AND TECH. 36 (1), 596610 (1963).Google Scholar
6. Rice, R.W., J. AM. CERAM. SOC. 59 (11–12), 536–7 (1976).Google Scholar
7. Woignier, T. and Phalippou, J., J. NON-CRYSTALLINE SOLIDS 100, 404–8 (1988).Google Scholar
8. Green, D.J., J. AM. CER. SOC. 66 (4), 288292 (1983).CrossRefGoogle Scholar
9. Haggerty, J.S., Lightfoot, A., Ritter, J.E., Nair, S.V. and Gennari, P., Ceramic Engineering and Science Proceedings 9 (7–8), 1073–77 (1988).Google Scholar
10. Flint, J.H. and Haggerty, J.S., AEROSOL SCI. AND TECH. 12, 7284 (1990).Google Scholar
11. Sheldon, B. W., The Formation of Reaction Bonded Silicon Nitride From Silane Derived Silicon Powders, Sc.D. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, January 1989.Google Scholar
12. Sheldon, B.W. and Haggerty, J.S., Ceramic Engineering and ScienceProceedings 10 (7–8), 784793 (1989).Google Scholar
13. Ritter, J.E., Nair, S.V., Gennari, P.A., Dunlay, W.A., Haggerty, J.S., and Garvey, G.J., ADV. CERAM. MAT. 1 (4), 415417 (1988).Google Scholar
14. Lightfoot, A., Ker, H.L., Haggerty, J.S., and Ritter, J.E., Ceramic Engineering and Science Proceedings. 11. (7–8), 842856 (1990).Google Scholar
15. Yang, J.-M., Kao, W.H., and Liu, C.T., MATLS. SCIENCE AND ENGG. A107, 8191 (1989).Google Scholar
16. Haggerty, J.S., Lightfoot, A., Ritter, J.E., Gennari, P.A., and Nair, S.V., J. AM. CER. SOC. 72 (9), 1675–79 (1989).Google Scholar