Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T22:57:33.795Z Has data issue: false hasContentIssue false

High Temperature Anatase TiO2 Stabilization in TiO2/Si Multilayer Structures

Published online by Cambridge University Press:  22 August 2012

Helmut Karl
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Martina Schaedler
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Eugen Ruff
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Bernd Stritzker
Affiliation:
Institut für Physik, Universität Augsburg, D-86135 Augsburg, Germany
Get access

Abstract

In this work TiO2/Si multilayer structures have been grown by sputtering. After rapid thermal annealing in pure inert gas or inert gas with oxygen atmosphere the multilayers have been investigated by high resolution transmission electron microscopy, μ-Raman and dynamic secondary ion mass spectrometry for their structure and anatase/rutile phase composition. It has been found that the photocatalytically more active anatase TiO2 is stabilized and that interdiffusion and chemical reaction processes were strongly hindered up to 1100°C annealing temperature in oxygen containing atmosphere. These findings are of particular importance since only at this high temperature simultaneous formation of embedded Si nanocrystallites can be achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Delley, B. and Steigmeier, E., Physical Review B, 47, 3, 13971400 (1993).Google Scholar
2. Cuadra, L, Martí, A and Luque, A, Thin Solid Films, 451452, 0, 593599 (2004).Google Scholar
3. Goyal, Amita, Rumaiz, Abdul K., Miao, Y., Hazra, Sukti, Ni, C. and Ismat Shah, S. et al. , Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26, 4, 13151320 (2008).Google Scholar
4. Chen, J.-J., Wu, J. C. S., Chieh Wu, P. and Ping Tsai, D. et al. , The Journal of Physical Chemistry C, 115, 1, 210216 (2011).Google Scholar
5. Mubeen, S., Hernandez-Sosa, G., Moses, D., Lee, J. and Moskovits, M. et al. , Nano Letters, 11, 12, 55485552 (2011).Google Scholar
6. Robert, Toussaint D., Laude, Lucien D., Geskin, Viktor M., Lazzaroni, Roberto and Gouttebaron, Rachel et al. , Thin Solid Films, 440, 1–2, 268277 (2003).Google Scholar
7. Nemanich, R. J., Fulks, R. T., Stafford, B. L. and Vander Plas, H. A. et al. , Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3, 3, 938941 (1985).Google Scholar
8. Orendorz, A., Brodyanski, A., Lösch, J., Bai, L.H., Chen, Z.H. and Le, Y.K. et al. , Surface Science, 601, 18, 43904394 (2007).Google Scholar
9. Hernandez, S., Martinez, A., Pellegrino, P., Lebour, Y., Garrido, B. and Jordana, E. et al. , Journal of Applied Physics, 104, 4, 44304 (2008).Google Scholar
10. Weinstein, B. and Piermarini, G., Physical Review B, 12, 4, 11721186 (1975).Google Scholar
11. Hubbard, K. J. and Schlom, D. G., Journal of Materials Research, 11, 11, 27572776 (1996).Google Scholar
12. Beyers, Robert, Journal of Applied Physics, 56, 1, 147152 (1984).Google Scholar
13. Iacona, Fabio, Bongiorno, Corrado, Spinella, Corrado, Boninelli, Simona and Priolo, Francesco et al. , Journal of Applied Physics, 95, 7, 37233732 (2004).Google Scholar
14. Sankur, H. and Gunning, W., Journal of Applied Physics, 66, 10, 47474751 (1989).Google Scholar
15. Hodroj, A., Chaix-Pluchery, O., Audier, M., Gottlieb, U. and Deschanvres, J.-L. et al. , Journal of Materials Research, 23, 03, 755759 (2008).Google Scholar
16. Pillai, S. C., Periyat, P., George, R., McCormack, D. E., Seery, M. K. and Hayden, H. et al. , The Journal of Physical Chemistry C, 111, 4, 16051611 (2007).Google Scholar