Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T06:36:33.383Z Has data issue: false hasContentIssue false

High-Resolution Electron Microscopy of Grain Boundary Migration

Published online by Cambridge University Press:  21 March 2011

K. L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
L. J. Thompson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
Fritz Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
Get access

Abstract

Atomic-scale grain boundary (GB) migration has been directly observed by high-resolution transmission electron microscopy (HREM). Atomic-scale motion of high-angle tilt GBs as well as twist and general GBs at gold island grains with a number of planar facets has been studied at ambient and elevated temperatures. GB migration mechanisms depend on GB structure and geometry. Strong indications for cooperative effects has been found. In this case, as has been proposed before, atoms may undergo small shifts in their lattice positions to be incorporated into the growing grain in a collective mode. At high temperature and in the absence of a strong driving force such small lattice regions are observed to fluctuate back and forth between the two grains. Faceted GBs typically move in spurts. This appears to be inherent to GB migration, whenever the motion is controlled by different structural entities. For some GB geometries the motion was found to proceed by the lateral propagation of atomic-scale steps.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gottstein, G., Molodov, D. A. and Shvindlerman, L. S., Interface Science 6, 7 (1998).Google Scholar
2. Smith, D. J., Rep. Prog. Phys. 60, 1513 (1997).Google Scholar
3. Medlin, D. L., Carter, C. B., Anghelo, J. E. and Mills, M. J., Phil. Mag. A 75, 733 (1997).Google Scholar
4. Song, S. G., Philosophical Magazine Letters 79, 511 (1999).Google Scholar
5. Kizuka, T., Iijima, M. and Tanaka, N., Phil. Mag. A 77, 413 (1998).Google Scholar
6. Gottstein, G., Czubayko, U., Molodov, D. A., Shvindlerman, L. S. and Wunderlich, W., Materials Science Forum 204–206, 99 (1996).Google Scholar
7. Ichinose, H. and Ishida, Y., Phil. Mag. A 60, 555 (1989).Google Scholar
8. Merkle, K. L. and Thompson, L. J., Materials Letters (in press) (2001).Google Scholar
9. Sinclair, R., Mrs Bulletin 19, 26 (1994).Google Scholar
10. Howe, J. M., Materials Transactions Jim 39, 3 (1998).Google Scholar
11. Ichinose, H. and Ishida, Y., Journal de Physique 51, C1, 185 (1990).Google Scholar
12. Kamino, T., Sasaki, K. and Saka, H., Microsc. Microanal. 3, 393 (1997).Google Scholar
13. Gottstein, G. and Shvindlerman, L. S., Scripta Metall. et Mater. 27, 1521 (1992).Google Scholar
14. Sutton, A. P. and Balluffi, R. W., Interfaces in Crystalline Materials, (Clarendon Press, Oxford, 1995).Google Scholar
15. Mott, N. F., Proc. Phys. Soc. 60, 391 (1948).Google Scholar
16. Turnbull, D., Trans. Metall. Soc. A.I.M.E. 191, 661 (1951).Google Scholar
17. Lücke, K. and Stüwe, H.-P., in Recovery and recrystallization of metals, edited by Himmel, L. (Interscience Publishers 1963) p. 171.Google Scholar
18. Gleiter, H., Acta metall. 17, 853 (1969).Google Scholar
19. Merkle, K. L. and Thompson, L. J., Phys. Rev. Lett. 83, 556 (1999).Google Scholar
20. Tan, T. Y., Hwang, J. C. M., Goodhew, P. J. and Balluffi, R. W., Thin Solid Films 33, 1 (1976).Google Scholar
21. Hoeschen, R., Sigle, W. and Phillipp, F., in Electron Microscopy 1996, Vol. 1 edited by Microscopy, E. S. o. (Europ. Soc. of Microscopy, Brussels 1998), p. 373.Google Scholar
22. Wolf, D., Surface Science 226, 389 (1990).Google Scholar
23. Wolf, D., Phys. Rev. Lett. 70, 627 (1993).Google Scholar
24. Wolf, D. and Merkle, K. L.. in MATERIALS INTERFACES Atomic-level structure and properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London 1992) p. 87.Google Scholar
25. Merkle, K. L. and Wolf, D., Phil. Mag. A 65, 513 (1992).Google Scholar
26. Merkle, K. L., Microscopy and Microanalysis 3, 339 (1997).Google Scholar
27. Jhan, R.-J. and Bristowe, P. D., Scripta metall. et mater. 24, 1313 (1990).Google Scholar
28. Babcock, S. E. and Balluffi, R. W., Acta metall. 37, 2367 (1989).Google Scholar
29. Schonfelder, B., Wolf, D., Phillpot, S. R. and Furtkamp, M., Interface Science 5, 245 (1997).Google Scholar
30. Upmanyu, M., Smith, R. W. and Srolovitz, D. J., Interface Science 6, 41 (1998).Google Scholar
31. Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S. and Gottstein, G., Interface Science 6, 287 (1998).Google Scholar