Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T06:17:51.606Z Has data issue: false hasContentIssue false

Host-Guest Systems in Microporous Carbons

Published online by Cambridge University Press:  10 February 2011

Toshiaki Enoki
Affiliation:
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152- 8551, Japan
Kazuyuki Takai
Affiliation:
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152- 8551, Japan
Yoshiyuki Shibayama
Affiliation:
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152- 8551, Japan
Norikazu Kobayashi
Affiliation:
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152- 8551, Japan
Atsuko Nakayama
Affiliation:
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152- 8551, Japan
Hirohiko Sato
Affiliation:
Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152- 8551, Japan
Naohiko Yoshida
Affiliation:
Department of Chemistry, Faculty of Textile Science and Technology, Shinshu University, Ueda 386–8567, Japan
Hidekazu Touhara
Affiliation:
Department of Chemistry, Faculty of Textile Science and Technology, Shinshu University, Ueda 386–8567, Japan
Get access

Abstract

Microporous activated carbon fibers (ACF) having huge specific surface areas are characterized as a three-dimensional network of nano-sized graphite domains. We investigate ACF-hosting host-guest systems aiming at novel phenomena produced by the host-guest interface interactions. An extraordinarily large amount of helium is condensed in the ACF micropores, suggesting the presence of ultra-micropores and the enhancement in the helium- nano-graphite interaction. Chemisorbed oxygen molecules are stabilized in the singlet states caused by the interaction with nano-graphite and it makes the micorpore volume swell. Iodine forms an intercalation system with nano-graphites through charge transfer process, in contrast with the behavior of bulk graphite that does not accept iodine as an acceptor-type intercalate. Fluorine reacting with nano-graphite generates dangling bond spins by breaking graphite π- bonds, where the fluorine-induced defect is found to have a widely extended electronic structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakayama, A., Suzuki, K., Enoki, T., Vittorio, S. L. di, Koga, K., Endo, M., and Shindo, N., Synth. Metals 57, 3736 (1993).Google Scholar
2. Vittorio, S. L. di, Nakayama, A., Enoki, T., Dresselhaus, M. S., Endo, M., and Shindo, N., J. Mater. Res. 8, 2282 (1993).Google Scholar
3. Enoki, T., Kobayashi, N., Nakayama, A., Suzuki, K., Ishii, C., Kaneko, K., Hosokoshi, Y, Kinoshita, M., Endo, M., and Shindo, N., Materials Res. Soc. Symp. Proc., vol.349, “Novel Forms of Carbon II”, ed. by Renschler, C. L., Cox, D. M., Pouch, J. J., Achiba, Y, p. 731 (1994).Google Scholar
4. Nakayama, A., Suzuki, K., Enoki, T., Ishii, C., Kaneko, K., Endo, M., and Shindo, N., Solid State Commun. 93, 323 (1995).Google Scholar
5. Sugihara, K., Nakayama, A., and Enoki, T., J. Phys. Soc. Jpn. 64, 2614 (1995).Google Scholar
6. Nakayama, A., Suzuki, K., Enoki, T., Koga, K., Endo, M., and Shindo, N., Bull. Chem. Soc. Jpn. 69, 333 (1996).Google Scholar
7. Enoki, T., J. Phys. Chem. Solids, 57, 663 (1996).Google Scholar
8. Kobayashi, N., Enoki, T., Murakami, Y., Suematsu, H., and Endo, M., Mol. Cryst. Liq. Cryst. 306, 103 (1997).Google Scholar
9. Shibayama, Y., Sato, H., Enoki, T., Endo, M., and Shindo, N., Mol. Cryst. Liq. Cryst. 310, 273 (1998).Google Scholar
10. Kobayashi, N., Enoki, T., Ishii, C., Kaneko, K., and Endo, M., J. Chem. Phys. 109, 1983 (1998).Google Scholar
11. Fujita, M., Wakabayashi, K., Nakada, K., and Kusakabe, K., J. Phys. Soc. Jpn. 65, 1920 (1996).Google Scholar
12. Kaneko, K., J. Membrane Sci. 96, 59 (1994).Google Scholar
13. Kuwabara, H., Suzuki, T., and Kaneko, K., J. Chem. Soc.; Faraday Trans. 87, 1915 (1991).Google Scholar
14. Tabbert, B., Beau, M., Gunther, H., Haussler, W., Honninger, C., Meyer, K., Putlitz, G. zu, Z. Phys. B97, 425 (1995).Google Scholar
15. Sakai, H., Matsuyama, T., Yamaoka, H., and Maeda, Y, Bull. Chem. Sco. Jpn. 56, 1016 (1983).Google Scholar
16. Shibayama, Y, Sato, H., Enoki, T., and Endo, M., unpublished results.Google Scholar
17. Gupta, V, Mathur, R. B., Bahl, O. P., Tressaud, A., and Flandrois, S., Synth. Metals 73, 69 (1995).Google Scholar
18. Saito, R., Yagi, M., Kimura, T., Dresselhaus, G., and Dresselhaus, M. S., J. Phys. Chem. Solids, submitted.Google Scholar