Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:10:08.555Z Has data issue: false hasContentIssue false

Hydrogen Adsorption of Ruthenium: Isosteres of Solubility of Adsorbed Hydrogen

Published online by Cambridge University Press:  10 February 2011

S. Yu. Zaginaichenko
Affiliation:
Institute for Problems of Materials Science of UAS, Kiev-150, P.O.Box 799, 252150 Ukraine, shurzag@ipms.kiev.ua
Z. A. Matysina
Affiliation:
State University, Dnepropetrovsk, 320000 Ukraine
D. V. Schur
Affiliation:
Institute of Hydrogen and Solar Energy, Kiev- 150, 252150 Ukraine
V. K. Pishuk
Affiliation:
Institute of Hydrogen and Solar Energy, Kiev- 150, 252150 Ukraine
Get access

Abstract

The theoretical investigation of solubility isosteres of adsorbed hydrogen has been performed for free face (0001) of crystals with hexagonal close-packed lattice A3 of Mg type. The face free energy has been calculated and its dependence on temperature, pressure, hydrogen concentration and character of hydrogen atoms distribution over surface interstitial sites of different type has been defined. The equations of thermodynamic equilibrium and solubility of adsorbed hydrogen have been defined. The plots of isosteres in the region of phase transition from isotropic to anisotropic state have been constructed and it has been established that in anisotropic state the order in distribution of hydrogen atoms over interstitial sites of different type must become apparent. Comparison of the theoretical isosteres with experimental for ruthenium has been carried out, the isotropic-anisotropic state transition can stipulate a stepwise and break-like change in isosteres.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alefeld, G., Völkl, J., Hydrogen in Metals, vol.1, II, 1978., pp. 480, 432.Google Scholar
2. Cahn, R. W., Haasen, P., Physical Metallurgy, vol. I, II, III, 1983, pp. 640, 624, 664.Google Scholar
3. Goltsov, V. A., Vodorod v Metallakh, Moscow: Atomizdat, 1978, pp. 193230.Google Scholar
4. Drits, M. E., Svoistva Elementov, Moscow: Metallurgiya, 1985, pp. 672.Google Scholar
5. Kraemer, K., Menzel, D., Ber. Bunsenges. Physic Chem., Bd. 78, 1974, pp. 728733.Google Scholar
6. Kolachev, B. A., Yu.V.Levinskii, Konstanty Vzaimodeistviya Metallov s Gazami, Moscow: Metallurgiya, 1987, pp. 368.Google Scholar
7. Kolachev, B. A. et. al., Gidridnye Sistemy, Moscow: Metallurgiya, 1992, pp. 352.Google Scholar
8. Fromm, E., Jehn, H., Bulletin of Alloy Phase Diagrams, 5, N3, pp. 324326, (1984).Google Scholar
9. Shultse, G., Metallofizika, Moscow: Mir, 1971, pp. 448.Google Scholar
10. Smithells, C. J., Metals Reference Book, 1976, pp. 448.Google Scholar
11. Matysina, Z. A., Pogorelova, O. S., Poverkhnost Kristallov, Dep. N 1420-YK93. Kiev, 1993.Google Scholar
12. Matysina, Z. A., Poverkhnost. Fizika, Khimiya, Mekhanika, 4, 1319, (1995).Google Scholar
13. Ryzhkov, V. I., Smirnov, A. A., Fiz. Met. i Metallovedeniye, 18, 670677, (1964).Google Scholar
14. Pines, B. Ya., Zhurnal Eksperim. Teoret. Fiz., 11, pp. 147158, (1941).Google Scholar
15. Aprekar, I. L., Finkelshtejn, B. N., Zhumal Eksperim. Teoret. Fiz., 21, N8, pp.900909, (1951).Google Scholar
16. Dienes, G. J., Acta Metallurgia, 6, N4, p. 278, (1958).Google Scholar
17. Matysina, Z. A., Smimov, A. A., Fiz. Met. i Metallovedeniye, 19, pp. 136147, (1964).Google Scholar
18. Wilson, A. H., Proc. Cambr. Phil. Soc., 34, p. 81, (1939).Google Scholar
19. Wilson, T. C., Phys. Rev., 56, p. 598, (1939).Google Scholar
20. Smirnov, A. A., Molekulyarno-Kineticheskaya Teoriya Metallov, Moscow: Nauka, 1966, pp. 448.Google Scholar