Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T00:39:21.507Z Has data issue: false hasContentIssue false

Hydrogen desorption behaviour of a ball-milled graphite - LiBH4 composite

Published online by Cambridge University Press:  01 March 2012

Yinghe Zhang
Affiliation:
School of Metallurgy and Materials, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
Alexander Bevan
Affiliation:
School of Metallurgy and Materials, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
David Book
Affiliation:
School of Metallurgy and Materials, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, B15 2TT, UK
Get access

Abstract

Graphite that had been ball-milled for 10 h in 3 bar hydrogen, was then mixed with lithium borohydride (2:1 molar ratio of graphite to LiBH4) and milled for a further 2 h. This resulted in a significantly enhanced the hydrogen desorption properties: compared with the pure hydrogenated milled graphite, added LiBH4 lowered the desorption temperature by 170°C, to 230°C, and increase the hydrogen desorption from 5.6 to 9.3 wt%, heating to 500°C. There was no detectable methane generation in the desorption gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Züttel, A.; Orimo, S., MRS Bull., 2002, 27 (9), pp 705711.Google Scholar
(2) Sun, D.; Ma, S.; Ke, Y.; Collins, D. J.; Zhou, H.-C., J. Am. Chem. Soc., 2006, 128 (12), pp 38963897.Google Scholar
(3) Suryanarayana, C., Prog. Mater Sci., 2001, 46 (1-2), pp 1184.Google Scholar
(4) Orimo, S.; Majer, G.; Fukunaga, T.; Züttel, A.; Schlapbach, L.; Fujii, H., Appl. Phys. Lett., 1999, 75 (20), pp 30933095.Google Scholar
(5) Ichikawa, T.; Fujii, H.; Isobe, S.; Nabeta, K., Appl. Phys. Lett., 2005, 86 (24).Google Scholar
(6) Miyaoka, H.; Ichikawa, T.; Kojima, Y., Nanotechnology, 2009, 20 (20).Google Scholar
(7) Zhang, Y.; Book, D., The Journal of Physical Chemistry C, 2011, DOI: 10.1021/jp206089x, 115 (51), pp 2528525289.Google Scholar
(8) Bogdanović, B.; Schwickardi, M., J. Alloys. Compd., 1997, 253254 (0), pp 19.Google Scholar
(9) Züttel, A.; Rentsch, S.; Fischer, P.; Wenger, P.; Sudan, P.; Mauron, P.; Emmenegger, C., J. Alloys. Compd., 2003, 356, pp 515520.Google Scholar
(10) Züttel, A.; Borgschulte, A.; Orimo, S. I., Scripta Mater., 2007, 56 (10), pp 823828.Google Scholar
(11) Yu, X. B.; Wu, Z.; Chen, Q. R.; Li, Z. L.; Weng, B. C.; Huang, T. S., Appl. Phys. Lett., 2007, 90 (3), p 034106.Google Scholar
(12) Fang, Z. Z.; Kang, X. D.; Wang, P.; Cheng, H. M., J. Phys. Chem. C, 2008, 112 (43), pp 1702317029.Google Scholar
(13) Fang, Z. Z.; Kang, X. D.; Dai, H. B.; Zhang, M. J.; Wang, P.; Cheng, H. M., Scripta Mater., 2008, 58 (10), pp 922925.Google Scholar
(14) Fang, Z. Z.; Kang, X. D.; Wang, P., Int. J. Hydrogen Energy, 2010, 35 (15), pp 82478252.Google Scholar
(15) Zhang, Y.; Zhang, W.-S.; Wang, A.-Q.; Li-Xian, S.; Fan, M.-Q.; Chu, H.-L.; Sun, J.-C.; Zhang, T., Int. J. Hydrogen Energy, 2007, 32 (16), pp 39763980.Google Scholar
(16) Zhang, Y.; Mann, V. S. J.; Reed, D.; Walton, A.; Harris, I. R.; Book, D., The Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, 2009, 1-4, pp 19871990.Google Scholar
(17) Zhang, Y.; Book, D., International Journal of Energy Research, 2011, DOI: 10.1002/er.1903, pp n/a-n/a.Google Scholar
(18) Wu, C.; Cheng, H.-M., J. Mater. Chem., 2010, 20 (26), pp 53905400.Google Scholar