Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T06:18:26.635Z Has data issue: false hasContentIssue false

Hysteresis Offset in Stress Induced Polarization-Graded Ferroelectrics

Published online by Cambridge University Press:  11 February 2011

J. V. Mantese
Affiliation:
Delphi Research Laboratories, Shelby Township, MI
N. W. Schubring
Affiliation:
Delphi Research Laboratories, Shelby Township, MI
A. L. Micheli
Affiliation:
Delphi Research Laboratories, Shelby Township, MI
M. P. Thompson
Affiliation:
Delphi Research Laboratories, Shelby Township, MI
R. Naik
Affiliation:
Department of Physics & Astronomy, Wayne State University, Detroit, MI
G. W. Auner
Affiliation:
Department of Electrical & Computer Engineering, Wayne State University, Detroit, MI
I. B. Misirlioglu
Affiliation:
Department of Metallurgy & Materials Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT
Z.-G. Ban
Affiliation:
Department of Metallurgy & Materials Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT
S. P. Alpay
Affiliation:
Department of Metallurgy & Materials Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT
Get access

Abstract

Polarization-graded ferroelectrics and their electrically active counterparts, graded ferroelectric devices (GFDs) and transpacitors has been achieved in a number ways, including a variation in the composition of the material, or impressing a temperature gradients across the structure. In this article, we report how these same devices can be formed from homogeneous ferroelectric films of lead strontium titanate by imposing stress gradients on the materials normal to their electrode surfaces. A qualitative description of asymmetric hysteresis behavior based on a modified Landau potential is provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mantese, J.V. and Schubring, N.W., Integ. Ferr. 37, 245 (2001).Google Scholar
2. Mantese, J.V., Micheli, A.L., Schubring, N.W., Appl. Phys. Lett., 79, 4007 (2001).Google Scholar
3. Ferroelectric Crystals, Jona, F. and Shirane, G., Macmillan (New York, The MacMillan Company, 1962) p.15 Google Scholar
4. Mantese, J.V., Schubring, N.W., Micheli, A.L., and Catalan, A.B., Appl. Phys. Lett. 67, 721 (1995).Google Scholar
5. Fellberg, W., Mantese, J., Schubring, N., and Micheli, A., Appl. Phys. Lett. 78, 524 (2001).Google Scholar
6. Mantese, J.V., Schubring, N.W., Micheli, A.L., Mohammed, M.S., Naik, R., and Auner, G.W., Appl. Phys. Lett. 71, 2047 (1997).Google Scholar
7. Brazier, M., McElfresh, M., and Mansour, S., Appl. Phys. Lett. 72, 1121 (1998).Google Scholar
8. Tsurumi, T., Miyasou, T., Ishibashi, Y., and Ohashi, N., Jpn. J. Appl. Phys. 37, 5104 (1998).Google Scholar
9. Bao, D., Yao, X., and Zhang, L., Appl. Phys. Lett. 76, 2779 (2000).Google Scholar
10. Bao, D., Mizutani, N., Yao, X., and L Zhang, Appl. Phys. Lett. 77, 1041 (2000).Google Scholar
11. Chen, Z., Arita, K., Lim, M., and Paz DeAraujo, C. A., Integ. Ferro. 24, 181 (1999).Google Scholar
12. Boerasu, I., Pintilie, L., and Kosec, M., Appl. Phys. Lett. 77, 2231 (2000).Google Scholar
13. Thermophysical Properties of Matter: The TPRC Data Series, “Thermal Expansion, Vol. 12 Metallic Elements and Alloys, Vol. 13 Nonmetallic Solids,” IFI/Plenum, New York (1975). The value for PST is not given but the thermal expansion coefficient cited is typical of a perovskite oxide.Google Scholar
14. Sawyer, C. B. and Tower, C.H., Phys. Rev. 35, 269 (1930).Google Scholar
15. Mechanics of Materials, Gere, J.M. and Timoshenko, S.P., (Boston, PWS Publishing Co., 1990) p.272 Google Scholar
16. Kretschmer, R. and Binder, K., Phys. Rev. B 20, 1065 (1979).Google Scholar
17. Kadanoff, L.P., et al., Rev. Modern Phys. 39, 395 (1967).Google Scholar
18. Landau, L.D. and Lifshitz, E.M., Statistical Physics (Pergamon Press, Oxford, 1980).Google Scholar