Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T00:54:00.848Z Has data issue: false hasContentIssue false

Imaging and Characterization of Self-Assembled Soft Nanostructures

Published online by Cambridge University Press:  01 February 2011

Elizabeth Fátima de Souza
Affiliation:
souzaef@uol.com.br, Pontifícia Universidade Católica de Campinas, Faculdade de Química, Campinas, Brazil
Omar Teschke
Affiliation:
oteschke@ifi.unicamp.br, Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, São Paulo, Brazil
Get access

Abstract

Long-ranged double layer interactions and specific tip penetration through the scanned layers should be considered when atomic force microscopy (AFM) is used to probe soft samples such as surfactants or biological material within liquid media. Therefore, AFM imaging of soft nanostructures requires a careful adjust of the applied force and the scanning velocity. A paramount advantage of this technique is that cells immersed in liquids can be imaged under physiological conditions. On the other hand, confocal Raman microscopy (CRM) allows the real-time monitoring and chemical characterization of compounds also in a noncontact manner. The three-dimensional distribution of substances can be recorded by CRM with high spatial resolution by scanning a tightly focused laser beam over the sample. By combining of these two techniques (AFM and CRM), it is possible to obtain relevant information on formation processes, characteristics and behavior of soft self-assembled nanostructures and of cells on hydrophilic or hydrophobic surfaces under physiological conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Roke, S., Chem. Phys. Chem. 10, 1380 (2009).Google Scholar
2 Teschke, O., Douglas, R. A., and Prolla, T. A., Appl. Phys. Lett. 70, 1977 (1997).Google Scholar
3 Doktycz, M. J., Sullivan, C. J., Hoyt, P. R., Pelletier, D .A., Wu, S., and Allison, D. P.. Ultramicroscopy 97, 209 (2003).Google Scholar
4 Teschke, O., and ESouza, . F. de, Langmuir 18, 6513 (2002).Google Scholar
5 Vadillo-Rodriguez, V., Busscher, H. J., Norde, W., Vries, J. de, Dijkstra, R. J. B., Stokroos, I., and Mei, H. C. van der. Appl. Environ. Microbiol. 70, 5441 (2004).Google Scholar
6 Engel, A., and Muller, D. J.. Nature Struct. Biol. 7, 715 (2000).Google Scholar
7 Ignatov, O. V., Gribanova, Y. S., Shchegolev, S. Y., Bunin, V. D., and Ignatov, V. V., Microbiology 71, 302 (2002).Google Scholar
8 Silva-Stenico, M. E., Neto, R. Cantusio, Alves, I. R., Moraes, L. A. B., Shishido, T. K., and Fiore, M. F., J. Braz. Chem. Soc. 20, 535 (2009).Google Scholar
9 Garcia, O. Jr. , Rev. Microbiol. 22, 1 (1991).Google Scholar
10 Kennedy, C. A., and O'Gara, J. P., J. Med. Microbiol. 53, 1171 (2004).Google Scholar
11 Bikandi, J., Moragues, M. D., Quindos, G., Polonelli, L., and Ponton, J., J. Dent. Res. 79, 1439 (2000).Google Scholar
12 Ceotto, G., Souza, E. F. de, and Teschke, O., J. Mol. Catal. A 167, 225 (2001).Google Scholar
13 Silva, A. da Jr. , and Teschke, O., Microbiol, J.. Biotechn. 21, 1103 (2005).Google Scholar
14 Lorincz, A., and Carter, B. L. A., Gen, J.. Microbiol. 129, 1599 (1983).Google Scholar
15 Reshes, G., Vanounou, S., Fishov, I., and Feingold, M., Biophys. J. 94, 251 (2008).Google Scholar
16 Udomrat, S., Praparn, S., and Puntheeranurak, T., J. Microsc. Soc. Thai. 23, 38 (2009).Google Scholar
17 Zapomlova, E., Hrouzek, P., ehakova, K., abacka, M., Stibal, M., Caisova, L., Komarkova, J., and Lukeova, A., Folia Microbiol. 53, 333 (2008).Google Scholar
18 Kelly, D. P., and Wood, A. P., Int. J. Syst. Evol. Microbiol. 50, 511 (2000).Google Scholar
19 Garcia, O. Jr. , Bigham, J. M., and Tuovinen, O. H., Rev. Microbiol. 28, 95 (1997).Google Scholar
20 Kluytmans, J., Belkum, A. van, and Verbrugh, H., Clin. Microbiol. Rev. 10, 505 (1997).Google Scholar
21 Law, J., Li, G., Lavigne, L., Reichner, J., and Tang, J. X., Biophys. J. 96, 628a (2009).Google Scholar
22 DeBeer, D., Stoodley, P., and Lewandowski, Z., Biotech. Bioeng. 44, 636 (1994).Google Scholar
23 Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M., Annu. Rev. Microbiol. 49, 711 (1995).Google Scholar
24 Souza, E. F. de, and Teschke, O., Solid State Phenom. 121–123, 829 (2007).Google Scholar
25 Neumann, A. W., Hum, O. S., Francis, D. W., Zingg, W., and Oss, C. J. van, J. Biomed. Mater. Res. 14, 499 (1980).Google Scholar
26 Teschke, O., Souza, E. F. de, Silva-Stenico, M. E., Fiori, M. F., and Etchegaray, A. Jr. , Microsc. Res. Techniq. 71, 112 (2008).Google Scholar
27 Mernagh, T. P., and Trudu, A. G., Chem. Geol. 103, 113 (1993).Google Scholar
28 White, S. N., Chem. Geol. 259, 240 (2009).Google Scholar
29 Howell, N. K., Arteaga, G., Nakai, S., Li-Chan, E. C. Y., J. Agric. Food Chem. 47, 924 (1999).Google Scholar
30 Farquharson, S., Grigely, L., Khitrov, V., Smith, W., Sperry, J. F., and Fenerty, G., J. Raman Spectrosc. 35, 82 (2004).Google Scholar
31 Fardim, P., and Duran, N., J. Braz. Chem. Soc. 16, 915 (2005).Google Scholar
32 Bao, W., D. M. O'Malley, and Sederoff, R. R., Proc. Natl. Acad. Sci. USA 89, 6604 (1992).Google Scholar
33 Ifuku, S., Nogi, M., Abe, K., Handa, K., Nakatsubo, F., and Yano, H.. Biomacromolecules 8, 1973 (2007).Google Scholar