Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T08:22:47.510Z Has data issue: false hasContentIssue false

Improved metastability and performance of amorphous silicon solar cells

Published online by Cambridge University Press:  03 November 2014

Takuya Matsui
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan
Adrien Bidiville
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan
Hitoshi Sai
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan
Takashi Suezaki
Affiliation:
Photovoltaic Power Generation Technology Research Association (PVTEC), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan Kaneka Corporation, 157-34 Kamiyoshidai, Toyooka, Hyougo, 668-0831 Japan
Mitsuhiro Matsumoto
Affiliation:
Photovoltaic Power Generation Technology Research Association (PVTEC), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
Kimihiko Saito
Affiliation:
Photovoltaic Power Generation Technology Research Association (PVTEC), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan Fukushima University, 1 Kanayagawa, Fukushima, Fukushima, 960-1296 Japan
Isao Yoshida
Affiliation:
Photovoltaic Power Generation Technology Research Association (PVTEC), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan
Michio Kondo
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 Japan
Get access

Abstract

We show that high-efficiency and low-degradation hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells can be obtained by depositing absorber layers in a triode-type plasma-enhanced chemical vapor deposition (PECVD) process. Although the deposition rate is relatively low (0.01-0.03 nm/s) compared to the conventional diode-type PECVD process (∼0.2 nm/s), the light-induced degradation in conversion efficiency of single-junction solar cell is substantially reduced (Δη/ηini∼10%) due to the suppression of light-induced metastable defects in the a-Si:H absorber layer. So far, we have attained an independently-confirmed stabilized efficiency of 10.11% for a 220-nm-thick a-Si:H solar cell which was light soaked under 1 sun illumination for 1000 hours at cell temperature of 50°C. We further demonstrate that stabilized efficiencies as high as 10% can be maintained even when the solar cell is thickened to >300 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yamamoto, K., Nakajima, A., Yoshimi, M., Sawada, T., Fukuda, S., Suezaki, T., Ichikawa, M., Koi, Y., Goto, M., Meguro, T., Matsuda, T., Kondo, M., Sasaki, T., and Tawada, Y., Sol. Energy 77, 939 (2004).Google Scholar
Boccard, M., Battaglia, C., Hänni, S., Söderström, K., Escarré, J., Nicolay, S., Meillaud, F., Despeisse, M., and Ballif, C., Nano Lett. 12, 1334 (2012).CrossRefGoogle Scholar
Kroll, U., Meier, J., Fesquet, L., Steinhauser, J., Benagli, S., Orhan, J.-B., Wolf, B., Borrello, D., Castens, L., Djeridane, Y., Multone, X., Choong, G., Domine, D., Boucher, J.-F., Madliger, P.-A., Marmelo, M., Monteduro, G., Dehbozorgi, B., Romang, D., Omnes, E., Chevalley, M., Charitat, G., Pomey, A., Vallat-Sauvain, E., Marjanovic, S., Kohnke, G., Koch, K., Liu, J., Modavis, R., Thelen, D., Vallon, S., Zakharian, A., and Weidman, D., Proc. 26th European Photovoltaic Solar Energy Conf./Exhib., 2011, p. 2340.Google Scholar
Terakawa, A., Hishida, M., Yata, S., Shinohara, W., Kitahara, A., Yoneda, H., Aya, Y., Yoshida, I., Iseki, M., and Tanaka, M., Proc. 26th European Photovoltaic Solar Energy Conf./Exhib., 2011, p. 2362.Google Scholar
Kadota, N., Hino, M., Tanimoto, A., Murakami, K., Fukuda, M., Yoshida, W., Sasaki, T., Fukuda, S., Nomura, T., and Nakajima, A., Tech. Dig. 21st Int. Photovoltaic Science and Engineering Conf., 2011, 2A-2O-05.Google Scholar
Stannowski, B., Gabriel, O., Calnan, S., Frijnts, T., Heidelberg, A., Neubert, S., Kirner, S., Ring, S., Zelt, M., Rau, B., Zollondz, J.-H., Bloess, H., Schlatmann, R., Rech, B., Sol. Energy Mater. Sol. Cells 119, 196 (2013).CrossRefGoogle Scholar
Matsui, T., Sai, H., Suezaki, T., Matsumoto, M., Saito, K., Yoshida, I., and Kondo, M., Proc. 28th European Photovoltaic Solar Energy Conference and Exhibition, 2013, p. 2213.Google Scholar
Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).CrossRefGoogle Scholar
Matsui, T., Sai, H., Saito, K., Kondo, M., Jpn. J. Appl. Phys. 51, 10NB04 (2012).CrossRefGoogle Scholar
Matsui, T., Sai, H., Saito, K., Kondo, M., Prog. Photovolt: Res. Appl. 21, 1363 (2013).CrossRefGoogle Scholar
Vaneček, M. and Poruba, A., Appl. Phys. Lett. 80, 719 (2002).CrossRefGoogle Scholar
Holovskú, J., Poruba, A., Purkrt, Z., Vaneček, M., Non-Cryst, J.. Solids, 354, 2167 (2008).Google Scholar
Melskens, J., van Elzakker, G., Li, Y., and Zeman, M., Thin Solid Films, 516, 6877 (2008).CrossRefGoogle Scholar
Fujibayashi, T., Matsui, T., and Kondo, M., Appl. Phys. Lett. 88, 183508 (2006).CrossRefGoogle Scholar
Luft, W., von Roedern, B., Stafford, B., and Mrig, L., Proc. 23rd IEEE Photovoltaic Specialists Conf., 1993, p. 860.CrossRefGoogle Scholar
Bhattacharya, E. and Mahan, A. H., Appl. Phys. Lett. 52, 1587 (1988).Google Scholar
Nishimoto, T., Takai, M., Miyahara, H., Kondo, M., and Matsuda, A., J. Non-Cryst. Solids 299302, 1116 (2002).CrossRefGoogle Scholar
Matsuda, A., Kaga, T., Tanaka, H., and Tanaka, K., J. Non-Cryst. Solids 5960, 687 (1983).CrossRefGoogle Scholar
Shimizu, S., Kondo, M., and Matsuda, A., J. Appl. Phys. 97, 033522 (2005).CrossRefGoogle Scholar
Sonobe, H., Sato, A., Shimizu, S., Matsui, T., Kondo, M., and Matsuda, A., Thin Solid Films 502, 306 (2006).CrossRefGoogle Scholar
Siamchai, P., and Konagai, M., Proc. 25th IEEE Photovoltaic Specialists Conf., 1996, p. 1093.Google Scholar
Lim, K.S., Konagai, M., and Takahashi, K., J. Appl. Phys. 56, 538 (1984).CrossRefGoogle Scholar
Sakai, H., Yoshida, T., Fujikake, S., Hama, T., and Ichikawa, Y., J. Appl. Phys. 67, 3494 (1990).Google Scholar
Rech, B., Beneking, C., and Wagner, H., Sol. Energy Mater. Sol. Cells 4142, 475 (1996).CrossRefGoogle Scholar
Benagli, S., Borrello, D., Vallat-Sauvain, E., Meier, J., Kroll, U., Hoetzel, J., Bailat, J., Steinhauser, J., Marmelo, M., Monteduro, G., and Castens, L., Proc. 24th European Photovoltaic Solar Energy Conf., 2009, p. 21.Google Scholar