Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T07:21:30.305Z Has data issue: false hasContentIssue false

Improvements of Thermoelectric Performances in AgSbTe2 System With in-situ Ag2Te Nano-Precipitations

Published online by Cambridge University Press:  01 February 2011

Shengnan Zhang
Affiliation:
leonayy@zju.edu.cn
Shenghui Yang
Affiliation:
yangttian@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Guangyu Jiang
Affiliation:
jianggy@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Junjie Shen
Affiliation:
irwin@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Tiejun Zhu
Affiliation:
zhutj@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Xinbing Zhao
Affiliation:
zhaoxb@zju.edu.cn, Zhejiang University, Materials Science and Engineering, Hangzhou, Zhejiang, China
Get access

Abstract

AgSbTe2 is the critical component in both LAST-m and TAGS-x system, which are two state-of-the-art mid-temperature thermoelectric bulk nanocomposites. By adjusting the Ag2Te/Sb2Te3 ratio, Sb2Te3 and Ag2Te precipitated samples were obtained with x = 0.68 to 0.74 and x = 0.84 to 0.90 (x as in (Ag2Te)x/2(Sb2Te3)1-x/2), respectively. The single phased AgSbTe2 was obtained with the x value of 0.78 and 0.81, which is consistent of the previous results on the phase diagram of (Ag2Te)x(Sb2Te3)1-x system. Comparing the effect of the two different precipitates, Ag2Te are much effective for the improvements of thermoelectric properties in AgSbTe2 nanocomposites. Utilizing the high-resolution transmission electron microscopy, Ag2Te was observed as nanodots and nano-lamellae embedded in the AgSbTe2 matrix, which can be related to the energy filtering effect for the increase of Seebeck coefficient. The relationship among the composition, microstructure and thermoelectric properties was systematically studied. It can be noticed that the thermoelectric properties of AgSbTe2 system are very sensitive to the composition, especially at low temperature. The maximum figure of merit ZT value of 1.53 was obtained at 500 K for Ag0.84Sb1.16Te2.16 with 40% increase comparing with the single phased sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rowe, D. M., CRC handbook of Thermoelectrics, (CRC, Boca Raton, FL, 1995).Google Scholar
2 Tritt, T. M. Science 283, 804 (1999).Google Scholar
3 Sootsman, J. R. Kong, H. Uher, C. D'Angelo, J. J., Wu, C. I. Hogan, T. P. Caillat, T. and Kanatzidis, M. G. Angew. Chem. Int. Ed. 47 (45), 8618 (2008).Google Scholar
4 Vashaee, D. and Shakouri, A. Phys. Rev. B92, 106103 (2004).Google Scholar
5 Heremans, J. P. Thrush, C. M. and Morelli, D. T. J. Appl. Phys 98 (6), 063703 (2005).Google Scholar
6 Zhang, Q. He, J. Zhu, T. J. Zhang, S. N. Zhao, X. B. and Tritt, T. M. Appl. Phys. Lett 93, 185103 (2008).Google Scholar
7 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303, 818 (2004).10.1126/science.1092963Google Scholar
8 Androulakis, J. Hsu, K. F. Pcionek, R. Kong, H. Uher, C. D'Angelo, J. J., Downey, A. Hogan, T. and Kanatzidis, M. G. Adv. Mater. 18 (9), 1170 (2006).Google Scholar
9 Barabash, S. V. Ozolins, V. and Wolverton, C., Phys. Rev. Lett. 101, 155704 (2008).Google Scholar
10 Cook, B. A. Kramer, M. J. Harringa, J. L. Han, M.K. Chung, D. Y. and Kanatzidis, M. G. Adv. Func. Mater. 19, 1 (2009).Google Scholar
11 Han, M. K. Hoang, K. Kong, H. J. Pcionek, R. Uher, C. Paraskevopoulos, K. M. Mahanti, S. D. and Kanatzidis, M. G. Chem. Mater. 20, 3512 (2008).Google Scholar
12 Wu, L. Zheng, J. Zhou, J. Li, Q. Yang, J. and Zhu, Y. J. Appl. Phys. 105, 094317 (2009).Google Scholar
13 Skrabek, E. A. and Trimmer, D. S. CRC Handbook of Thermoelectrics, ed. Rowe, D.M., (CRC Press, Boca Raton, FL, 1995) pp. 267.Google Scholar
14 Yang, S. H. Zhu, T. J. Sun, T. He, J. Zhang, S. N. and Zhao, X. B. Nanotechnology 19, 245707 (2008).Google Scholar
15 Wernick, J. H. and Benson, K. E. J. Phys. Chem. Solids 3 (1-2), 157 (1957).Google Scholar
16 Matsushita, H. Hagiwara, E. and Katsui, A. J. Mater. Sci. 39, 62996301 (2004).Google Scholar
17 Wang, H. Li, J. F. Zou, M. and Sui, T. Appl. Phys. Lett 93, 202106 (2008).Google Scholar
18 Irie, T. Takahama, T. and Oho, T. Jpn. J. Appl. Phys. 2, 7282 (1963).Google Scholar
19 Armstrong, R. W. Faust, J. W. Jr. and Tiller, W. A. J. Appl. Phys. 31, 1954 (1960); T. Ikeda V. A. Ravi and G. J. Snyder Acta Materialia 57, 666 (2009).Google Scholar
20 Zhang, S.N. Zhu, T.J. Yang, S.H. Yu, C. and Zhao, X.B. J. Alloy. Compd. (Published online doi: 10.1016/j.jallcom.2010.03.170).Google Scholar
21 Fujikane, M. Kurosaki, K. Muta, H. and Yamanaka, S. J. Alloy and Comp. 393, 299 (2005).Google Scholar
22 Majer, R. G. Zeitschrift Fur Metallkunde 54, 311 (1963).Google Scholar
23 Nishio, Y. and Hirano, T. Jpn. J. Appl. Phys. 36, 170174 (1996).Google Scholar
24 Zide, J. M. Klenov, D. O. Stemmer, S. Gossard, A. C. Zeng, G. Bowers, J. E. Vashaee, D. and Shakouri, A. Appl. Phys. Lett. 87, 112102 (2005).Google Scholar