Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T01:12:25.490Z Has data issue: false hasContentIssue false

In Situ Control of Energy Bandgap by Laser Enhanced Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  21 February 2011

J. E. Epler
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA 94304
H. F. Chung
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA 94304
D. W. Treat
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA 94304
T. L. Paoli
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto CA 94304
Get access

Abstract

Laser-assisted crystal growth experiments have been performed in an upflow vertical metalorganic chemical vapor deposition reactor. An Ar+ laser (514.5 nm) is used to locally heat and photo-excite the surface adlayer during growth. The laser irradiation is observed to enhance the growth rate and Al composition of AlGaAs if the substrate temperature is ˜580 °C. The laser-grown AlGaAs epitaxy is single crystal with good surface morphology and is used to fabricate multiple wavelength light emitting diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roth, W., Krauth, H., Krings, A., and Beneking, H., Mater. Res. Soc. Sym. Proc. 17, 793 (1983).Google Scholar
2. Aoyagi, Y., Masuda, S., Namba, S., and Doi, A., Appl. Phys. Lett. 47,95 (1985).Google Scholar
3. Bedair, S. M., Whisnant, J. K., Karam, N. H., Tischler, M. A., and Katsuyama, T., Appl. Phys. Lett. 48, 174 (1986).Google Scholar
4. Kukimoto, H., Ban, Y., Komatsu, H., Takechi, M., and Ishizaki, M., J. Crystal Growth 77,223 (1986).Google Scholar
5. Soga, T., Takahashi, Y., Sakai, S., and Umeno, M., J. Crystal Growth 68,169 (1984).CrossRefGoogle Scholar
6. Leys, M. R. and Veenvliet, H., J. Crystal Growth 55,477 (1981).Google Scholar
7. Photovoltaic spectroscopy measurements are made with a Polaron PN 4250 doping profiler.Google Scholar