No CrossRef data available.
Published online by Cambridge University Press: 16 February 2011
The transformation properties of Cu-Al-Ni alloys modified by the additions of boron and manganese have been interpreted by studying the reversibility and stability of the martensitic transformation as a function of heat treatment and of manganese concentration between 2 and 4 wt%. The alloy containing 2% Mn exhibits a lack of thermoelasticity due to a decrease of the degree of B2 order and supression of DO3 order during quenching and the increase of both types of order during annealing. From the determination of the activation energies responsible for the martensitic and reverse transformations, we have deduced that, in both cases, the kinetics of the transformation are controlled by an atomic jump at the interface between the two phases.