Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T11:47:02.706Z Has data issue: false hasContentIssue false

The Influence of Preoxidation on the Corrosion of Copper Nuclear Waste Canisters in Aqueous Anoxic Sulphide Solutions

Published online by Cambridge University Press:  19 October 2011

Jared M. Smith
Affiliation:
jsmith6@uwo.ca, The University of Western Ontario, Chemistry, 1151 Richmond St., London, N6A5B7, Canada, 519-661-2111 *86357, 519-661-3022
Z. Qin
Affiliation:
zqin@uwo.ca, The University of Western Ontario, Chemistry, 1151 Richmond St., London, N6A5B7, Canada
J. C. Wren
Affiliation:
jcwren@uwo.ca, The University of Western Ontario, Chemistry, 1151 Richmond St., London, N6A5B7, Canada
D. W. Shoesmith
Affiliation:
dwshoesm@uwo.ca, The University of Western Ontario, Chemistry, 1151 Richmond St., London, N6A5B7, Canada
Get access

Abstract

Scandinavian/Canadian high-level nuclear waste repository conditions are expected to evolve from initially warm and oxic to eventually cool and anoxic. During the warm oxic period, corrosion products will accumulate on the container surface. These deposits could impede the reaction of Cu with aqueous sulphide, the only reaction that could lead to the significant accumulation of additional corrosion damage under the long-term anoxic conditions. The kinetics of reaction of Cu with aqueous sulphide solutions have been studied using electrochemical and surface analytical techniques. Corrosion potential measurements were used to follow the evolution of the surface as oxides/hydroxides were converted to sulphides in the sulphide concentration range 10-5 to 10-3 mol/L. Changes in composition were followed by in-situ Raman spectroscopy. Of critical importance is whether or not a period of preoxidation of a Cu container surface can prevent subsequent reaction of the surface with remotely produced sulphide

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. King, F.. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-02-25 (2002).Google Scholar
2. McMurry, J.. Evolution of a Canadian Deep Geologic Repository: Base Scenario, Ontario Power Generation Report No: 06819-REP-01200-10092-R00 (2003).Google Scholar
3. McMurry, J.. Evolution of a Canadian Deep Geologic Repository: Base Scenario, Ontario Power Generation Report No: 06819-REP-01200-10127-R00 (2004).Google Scholar
4. Puigdomenech, I., Taxen, C.. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-00-13 (2000).Google Scholar
5. SKB, Deep Repository for Spent Nuclear Fuel, SR 97 – Post Closure Safety TR-99-06 (1999).Google Scholar
6. Mattsson, E.. SKB Projekt Inkapsling Projekt PM, 97-3420-22, Stockholm (1997).Google Scholar
7. Karnland, O. et al. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-00-22 (2000).Google Scholar
8. King, F., Litke, C., Ryan, S.. Corrosion Science, 23, 1979 (1992).Google Scholar
9. Pederson, K.. SKB Swedish Nuclear Fuel and Waste Management Co. Technical Report, TR-00-04 (2000).Google Scholar
10. Pourbaix, M, Pourbaix, A.. Geochim. Cosmochim. Acta, 56, 3157 (1992).Google Scholar
11. Simard, S., Odziemkowski, M. S., Irish, D. E., Brossard, L., Menard, H.. J. Appl. Electrochem., 31, 913 (2001).Google Scholar
12. Lee, C. T., Odziemkowski, M. S., Shoesmith, D. W.. J. Electrochem. Soc, 153(2), B33 (2006).Google Scholar
13. Abd El Haleem, S. M., Ateya, B.. J. Electroanal. Chem.., 117, 309 (1981).Google Scholar
14. Ambrose, J., Barradas, R., Shoesmith, D. W.. Electroanalytical Chem. And Interfacial Electrochem., 47, 47 (1973).Google Scholar
15. Strehblow, H.-H., Maurice, V., Marcus, P.. Electrochim. Acta, 46, 3755 (2001).Google Scholar
16. Gennero De Chialvo, M. R., Marchiano, S. L., Arvia, A. J.. J. Appl. Electrochem., 14, 165 (1984).Google Scholar
17. Shirkhanzadeh, M., Thompson, G. E., Ashworth, V.. Corrosion Science, 31, 293 (1990).Google Scholar
18. Strehblow, H.-H., Titze, B.. Electrochim. Acta, 25, 839 (1979).Google Scholar
19. Hurley, B., McCreery, R.. J. Electrochem. Soc., 150(8), B367 (2003).Google Scholar
20. Texier, F., Servant, L., Bruneel, J. L., Argoul, F.. J. Electroanal. Chem., 446, 189 (1998).Google Scholar
21. Cioffi, N. et al.. J. Mat. Chem., 11, 1434 (2001).Google Scholar
22. Schwartz, D., Muller, R.. Surface Science, 248, 349 (1991).Google Scholar
23. Mayer, S., Muller, R.. J. Electrochem. Soc., 139(2), 426 (1992).Google Scholar
24. Hamilton, J. C., Famer, J. C., Anderson, R. J.. J. Electrochem. Soc., 133(4), 739 (1986).Google Scholar
25. Hartinger, S., Pettinger, B., Doblhofer, K.. J. Electroanal. Chem., 397, 335 (1995).Google Scholar
26. Parker, G., Hope, G., Woods, R. Proc. Electrochem. Soc. (Electrochem. In Mineral Processing VI), 203, 181 (2003).Google Scholar
27. Kudelski, A.. J. Raman Spec., 34, 853 (2003).Google Scholar
28. Woods, R., Hope, G., Watling, K.. J. App. Electrochem., 30, 1209 (2000).Google Scholar
29. Smith, J., Wren, J. C., Odziemkowski, M., Shoesmith, D. W.. Submitted to J. Electrochem Soc.Google Scholar
30. Stewart, S., Zhang, X., Shoesmith, D. W., Wren, J. C., submitted to J. Electrochem. Soc.Google Scholar