Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T21:41:53.915Z Has data issue: false hasContentIssue false

Influence of Surface Segregation on the Mechanical Property of Metallic Alloy Nanowires

Published online by Cambridge University Press:  30 March 2012

Aditi Datta
Affiliation:
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
Zhiyao Duan
Affiliation:
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
Guofeng Wang
Affiliation:
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261
Get access

Abstract

The influence of surface segregation on the elastic properties of Pt-M (M = Ni, Co, or Fe) nanowires (NWs) are examined by comparing the predicted Young’s moduli of the segregated and non-segregated nanowires using density functional theory (DFT) calculations and the computed stress-strain curves under tensile loading using molecular dynamics (MD) simulation method. The moduli of the segregated NWs were found to be higher than that of the non-segregated ones. It is believed that the surface segregation increases the number of Pt-M bonds across the outermost and second surface layers, and thus enhances the Young’s modulus of the segregated Pt-M nanowires. MD results confirm our DFT results and it is found that onset of plastic deformation could be altered by the surface segregation process, as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Surface Segregation Phenomena , Dowben, P.A., Miller, A. (Eds.), CRC Press, Boca Raton, Florida, 1990.Google Scholar
2. Wang, G.F., van Hove, M.A., Ross, P.N., and Baskes, M.I., Prog. Surf. Sci. 79, 28 (2005).Google Scholar
3. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G.F., Ross, P.N., Lucas, C.A., and Markovic, N.M., Science 315, 493 (2007).Google Scholar
4. Gauthier, Y., Joly, Y., Baudoing, R., and Rundgren, J., Phys. Rev. B 31, 6216 (1985).Google Scholar
5. Wang, G.F., van Hove, M.A., Ross, P.N., and Baskes, M.I., J. Chem. Phys. 122, 024706 (2005).Google Scholar
6. Miller, R. E. and Shenoy, V. B., Nanotechnology 11, 139 (2000).Google Scholar
7. Wang, G.F. and Li, X.D., J. Appl. Phys. 104, 113517 (2008).Google Scholar
8. McDowell, M. T., Leach, A.M., Gall, K., Nano Lett. 8, 3613 (2008).Google Scholar
9. McDowell, M.T., Leach, A.M., Gall, K., Modell. Simul. Mater. Sci. Eng. 16, 045003 (2008).Google Scholar
10. Huang, D., Qiao, P.Z., J Aerospace Eng. 24, 147 (2011).Google Scholar
11. Yang, Z., Lu, Z., and Zhao, Y-P, J Appl. Phys. 106, 023537 (2009).Google Scholar
12. Ji, C. and Park, H. S., Nanotechnology 18, 305704 (2007).Google Scholar
13. Leach, A. M., McDowell, M., and Gall, K., Adv. Funct. Mater. 17, 43 (2007).Google Scholar
14. Sankaranarayanan, S. K. R. S., Bhethanabotla, V. R., and Joseph, B., Phys. Rev. B 76, 134117 (2007).Google Scholar
15. Lee, B. and Rudd, R. E., Phys. Rev. B 75, 195328 (2007).Google Scholar
16. Ma, L., Wang, J., Zhao, J., and Wang, G., Chem. Phys. Lett. 452, 183 (2008).Google Scholar
17. Zhang, L. and Huang, H. C., Appl. Phys. Lett. 89, 183111 (2006).Google Scholar
18. Hung, L. and Carter, E. A., J. Phys. Chem. C 115, 6269 (2011).Google Scholar
19. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
20. Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
21. Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
22. Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
23. Datta, A., Duan, Z. and Wang, G.F. Comp. Mater. Sci. 55, 81 (2012).Google Scholar
24. Plimpton, S. J., J. Comput. Phys. 117, 1 (1995). http://lammps.sandia.gov Google Scholar